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1. Abstract
1.1. Background: To identify the Anteroposterior/Transverse di-
ameter (A/T) ratio on Ultrasound (US) and use a clinical model to 
discriminate between benign and malignant thyroid nodules. 

1.2. Methods: A total of 1,218 thyroid nodules (training dataset) 
and 601 thyroid nodules (validation dataset) were enrolled. Clini-
cal and US features were extracted for a random forest model and 
to estimate the weight of each feature. Subsequently, a nomogram 
model was constructed for external validation. Finally, the diag-
nostic performances of the models were determined. 

1.3. Results: The Area Under the Curve (AUC) of the random for-
est model showed good discrimination in the training dataset and 
validation dataset (AUC: 0.897 vs. 0.769), which was significantly 
higher than that without the A/T ratio in the models (AUC: 0.862 
vs. 0.716) (all P<0.05). The nomogram model based on the top 
three significant highest risk factors (A/T ratio, age, and multi-
ple microcalcifications) showed an AUC of 0.818 in the validation 
dataset, which was also significantly higher than that without the 

A/T ratio in the model (AUC 0.732) (P<0.05). The AUC of the A/T 
ratio as a single feature in the training dataset was 0.735, with a 
cutoff value of nearly 0.9 and a specificity of 95%, which yielded 
an AUC of 0.745, sensitivity of 74.81%, and specificity of 85.29% 
for diagnosing malignancy in validation dataset. 

1.4. Conclusion: The clinical and US feature-derived clinical 
model had a good performance for diagnosing thyroid malignan-
cy, while an A/T ratio≥0.9 can reduce misdiagnosis and add more 
contribution for diagnostic performance.

2. Introduction
Thyroid nodules are commonly seen in clinical practice, with an 
estimated prevalence ranging from 25 to 70% in adults, and over 
10% of these nodules are malignant with the use of Ultrasound 
(US) [1, 2]. Several guidelines have been published to provide an 
easy-to-use US-based method to classify thyroid nodules, reduce 
unnecessary biopsies, detect thyroid malignancies that are likely 
to cause patient harm and thus avoid misdiagnosis as well as over-
treatment [3-5]. Accordingly, the US features of malignant thy-
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roid nodules, including microcalcifications, a solid composition, 
anteroposterior to transverse diameter ratio (A/T) ≥1, markedly 
hypoechoic echotexture, and irregular margins, have been well 
characterized. [6-9] Notably, studies have shown that nodules with 
an A/T≥1 have an 8.6- to 25.3-fold higher risk of being malig-
nant than nodules with other characteristics [10, 11], yielding a 
relatively high specificity ranging from 60.0% to 100.0% [7-16]. 
However, there remains an evidence gap regarding the diagnosis 
of thyroid cancer using A/T≥1. For example, the prevalence of 
incidental A/T≥1 found in malignancies was only 44-68%, and a 
“gray zone” still exists, with approximately 32-56% of the A/T 
ratio<1 remaining malignancy or indeterminate after stratification 
even after fine-needle biopsy [7, 8, 10, 17]. Given these results, 
further workup with an exact or specific diagnostic cutoff point of 
the A/T ratio to distinguish between benign and malignant nodules 
and reduce the misdiagnosis is highly desirable.

Several studies have proposed that A/T >1.2 improves the spec-
ificity for malignant risk assessment [15, 18, 19], although these 
studies are invariably one-sided and lack reproducibility due to 
their heterogeneity and insufficient patient data. These consider-
ations suggested that a slightly higher A/T ratio threshold for nod-
ules might improve the specificity of risk stratification systems in 
ruling out malignancy and might deteriorate the detection rate in 
pinpointing nodules for biopsy. Furthermore, in those studies, US 
findings and tumor clinicopathologic characteristics were simulta-
neously incorporated to predict malignancy [11, 19, 20], or a risk 
model was developed for predicting malignancy in a subgroup of 
patients [21-23]. Considering that US characteristics, such as size, 
morphology, and position, might be directly related to the prob-
ability of malignancy, it is necessary to explore the independent 
contributions of thyroid lesion US features, especially the A/T ra-
tio, in determining the likelihood of malignancy in a preoperative 
patient population.

In recent years, machine learning algorithm-based clinical models 
have attracted much attention in precise imaging-based diagno-
sis and prediction with AUCs from 0.808 to 0.904 [24, 25] when 
compared to those in clinical practice with AUCs from 0.551 to 
0.678 [11, 19-23], verifying that the combination of US features of 
primary tumors and machine learning may yield a great diagnostic 
effect for predicting thyroid malignancies, owing to its advantag-
es of being fast, accurate, reproducible, and applicable to other 
outcomes [26-28]. However, until now, a machine learning-based 
clinical model for the A/T ratio for thyroid malignancy with US 
has not yet been devised. Therefore, it is necessary to explore its 
independent contribution to determining the likelihood of malig-
nancy for the patient population in a preoperative setting.

The aim of this study was to use a machine learning algorithm 
to construct a clinical model with US to predict malignancy and 
determine an independent specific cutoff point for the A/T ratio in 
clinical practice, which could be feasible for only an A/T ratio of 

sonographic criteria for identifying nodal malignant preoperative-
ly or recommending fine-needle biopsy in thyroid nodules and in-
creasing the thyroid cancer detection rate independent of the size.

3. Materials and Method
3.1. Patients

A total of 949 patients with 1,218 thyroid lesions were enrolled 
consecutively for the training dataset from January 2014 to De-
cember 2020 in Jinling Hospital. We also obtained data from 547 
patients with 601 lesions for the validation dataset at the First 
People's Hospital of Taicang. The clinical data, US images, and 
pathological results were retrospectively reviewed. The inclusion 
criteria were as follows: (1) pathological diagnosis of malignant 
thyroid nodules and pathological confirmation as benign nodules 
that have suspicious features on US images for malignancy; (2) 
US scan of the thyroid acquired within one month before surgery; 
(3) pathologically identified lesions with a diameter equal to or 
less than 3 cm; and (4) preoperative location and labeling by a US 
radiologist with more than 10 years of experience. All matched 
lesions were sent for pathologic examination. The exclusion cri-
teria were as follows: (1) biopsy performed before US scanning; 
(2) target neoplasms that could not be visualized on US; and (3) 
incomplete clinical and pathological information. This study was 
approved by the institutional review board of Jinling Hospital and 
the First People's Hospital of Taicang and informed consent was 
obtained.

3.2. US Scanning and Imaging Acquisition

All of the included patients underwent US scanning before surgery. 
High-quality US images were acquired with commercial US de-
vices (IU22 (Philips), Logic9 (GE)) with linear probes (3-12 MHz, 
centered at 10 MHz). Before collecting US data, all US radiolo-
gists involved in the acquisition of US images had more than 5 
years of experience in thyroid US. They underwent rigorous train-
ing to standardize the imaging parameter adjustment method and 
the US scanning procedure of the thyroid according to the AIUM 
practice guideline for performing thyroid US [29]. It is routinely 
required to acquire images of the anteroposterior and transverse 
sections of the target nodules for subsequent analysis. To avoid 
bias in the measurements, nodules larger than 3 cm displayed on 
the images were excluded. All the data of each sub center were 
gathered and reviewed for further analysis by two senior US ra-
diologists blinded to the clinical and pathological results, and only 
the data that passed the quality control examination were included.

3.3. Feature Extraction

The variables used for model development included both clinical 
and image features. The clinical variables included sex, age, and 
the serum Thyroid-Stimulating Hormone (TSH), Triiodothyronine 
(T3), Free Triiodothyronine (FT3), Thyroxine (T4), and Free Thy-
roxine (FT4) levels, and the imaging variables included thyroid 
size and nodule size, the A/T ratio, position of the nodule, loca-
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tion within the lobe, nodule morphology, nodule boundary, nod-
ule margin, echogenicity, posterior echo attenuation, side shad-
owing, halo, lesion calcification and blood flow. These features 
were extracted and used to estimate the probability of malignancy 
(detailed in Table S1). Two radiologists read the images and per-
formed feature extraction. The missing data rates of all features 
were less than 10%. Regarding missing data, mean interpolation 
was used for continuous variables, and mode interpolation was 
used for rank or classification variables. The class variables were 
then coded with features, and 53 features were obtained.

Statistical analysis was performed using the SPSS 22.0 software 
package (SPSS, Chicago, IL, USA) and R (http://www.R-project.
org). Continuous variables were compared using the paired Stu-
dent’s t test or Mann-Whitney U-test, while discrete variables were 
compared using the chi-square or Fisher's exact test, as appropri-
ate. Only statistically significant variables (P<0.05) from univari-
able analysis were entered into the multivariable analysis to eval-
uate the association between malignancy and the risk factors. We 
also performed variance analysis for the features. The sequential 
method of Bonferroni correction was applied to adjust the baseline 
significance level (α = 0.05) for multiple testing bias. A p-value < 
0.05 was considered statistically significant.

3.4. Model Construction and Validation

First, the random forest algorithm was used to build the classifier 
model and evaluate all of the features for their ability to predict 
benign and malignant thyroid nodules. Then, the weighted features 
were screened out according to their respective coefficients. The 
feature selection process used the least absolute shrinkage and 
selection operator algorithm with a penalty term called L1-norm 
(C-index was set as 1.00). Finally, the models were construct-
ed using 5-fold cross-validation in the training dataset and were 
tested independently in the validation dataset. Calibration curves 
were plotted to assess the calibration of the random forest models, 
accompanied by the Hosmer-Lemeshow test. (A significant result 
implies that the model does not calibrate perfectly.) Decision curve 
analysis was conducted to determine the clinical usefulness of the 
model by quantifying the net benefits at different threshold proba-
bilities in the validation dataset.

Second, to provide clinicians with a quantitative tool to predict the 
individual probability of malignancy, a nomogram based on the 
risk predictive factors obtained by multivariate logistic regression 
analyses was built. To choose the most significant parameters for 
predicting malignancy, we chose the top 3 parameters associated 
with the highest risk. The model was constructed in the training 
dataset and tested independently in the validation dataset. The no-
mogram was plotted using R with the “Hmisc” package.

Finally, we specifically evaluated the diagnostic performance of 

the A/T ratio as a single feature and determined a cutoff point for 
the A/T ratio with a high specificity of 95%. Furthermore, to eval-
uate the contribution of the A/T ratio to the predictive performance 
of the models, the A/T ratio was excluded in each model to test 
their predictive performance.

The diagnostic performance of each model was evaluated by us-
ing Receiver Operating Characteristic (ROC) curves and the cor-
responding Areas Under the Curve (AUCs). The differences be-
tween AUCs were compared using Delong analysis. The optimal 
cutoff value, accuracy, sensitivity, specificity, positive predictive 
value, and negative predictive value were calculated to assess the 
discriminative ability of each model.

4. Results
4.1. Clinical and Sonographic Characteristics in the Training 
Dataset

The training dataset consisted of 468 men and 750 women, with 
288 (23.65%) lesions diagnosed as benign and 930 (76.35%) le-
sions diagnosed as malignant (Table S2). There were statistically 
significant differences in sex and age between the patients with 
benign and malignant nodules (Table S3). More female patients 
(50.08%) had malignant nodules (P< 0.05), and the patients with 
malignant nodules were younger than those without malignant 
nodules (49.65±11.18 years vs. 42.81±12.02 years, P< 0.05). 
However, there were no significant differences in FT3, FT4, TSH, 
T3, and T4 values between the two groups.

According to the Mann-Whitney U test and chi-square or Fisher's 
exact test, malignant tumors had a higher A/T ratio than benign 
lesions (0.89±0.27 vs. 0.69±0.19, P=0.000) and were more like-
ly to have markedly irregular morphology (46.45% vs. 13.54%, 
P=0.000), poorly defined margins (57.74% vs. 17.01%, P=0.000), 
and coexisting calcifications (44.01% vs. 4.93%, P=0.000). The 
other characteristics of thyroid nodules, including anteroposterior 
diameter, boundary, echogenicity, posterior echo attenuation, side 
shadowing, and blood flow, were significantly different between 
benign and malignant nodules (P< 0.05). There were no differenc-
es in thyroid size or echogenicity between the benign and malig-
nant groups (P > 0.05) (Table S3).

Multiple logistic regression analysis showed that the A/T ratio, 
multiple microcalcifications, and age were the top 3 parameters 
associated with the highest risk in the training dataset. The A/T 
ratio had a significant and positive relationship with the risk of thy-
roid malignancy (OR 41.833, 95% CI 14.622-119.684) (Table 1). 
Additionally, younger age (OR 0.961, 95% CI 0.946-0.976) and 
the coexistence of multiple microcalcifications (OR 4.618, 95% 
CI 1.032-20.671) were also independently associated with an in-
creased risk for malignant nodules. The other parameters related to 
malignancy are shown in Table S4.
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Table 1: The multiple regression model for the most important clinical and US characteristics of thyroid nodules in the training and validation datasets

Parameters Training dataset Validation dataset
 B SE Wald OR 95% CI P B SE Wald OR 95% CI P
A/T ratio 3.734 0.536 48.465 41.833 14.622-119.684 0 3.23 1.421 5.164 25.285 1.559-410.054 0
Age -1.204 0.008 24.476 0.961 0.946-0.976 0 -0.007 0.012 32.984 0.932 0.910-0.955 0
Calcification (multiple 
microcalcifications) 1.53 0.765 4.004 4.618 1.032-20.671 0.045 1.091 0.5 4.764 2.976 1.118-7.924 0.029

SE: standard error; OR: odds ratio; CI: confidence interval.

4.2. Clinical and Sonographic Characteristics in the Validation 
Dataset

The validation dataset consisted of 171 (28.45%) lesions diagnosed 
as benign and 430 (71.55%) lesions diagnosed as malignant (Table 
S2). There were statistically significant differences in sex and age 
between the patients with benign and malignant nodules (P< 0.05) 
(Table S3). However, there were no significant differences in FT3, 
FT4, TSH, T3, and T4 values between the two groups.

Among the sonographic characteristics, malignant tumors had a 
higher A/T ratio than benign lesions (0.85±0.31 vs. 0.65±0.18, 
P=0.000) and were more likely to have markedly irregular mor-
phology (52.33% vs. 16.37%, P=0.000), unclear margins (56.51% 
vs. 11.70%, P=0.000), and coexisting multiple microcalcifications 
(49.07% vs. 16.96%, P=0.000). The other characteristics of thy-
roid nodules, including tumor size, boundary, echogenicity, pos-
terior echo attenuation, side shadowing, and blood flow, were 
significantly different between benign and malignant nodules (P< 
0.05) (Table S3).

Multiple logistic regression analysis showed that the A/T ratio, 
multiple microcalcifications, and age were also associated with 
malignancy in the validation dataset. The A/T ratio had a signif-
icant and positive relationship with the risk of thyroid malignan-
cy (OR 25.285, 95% CI 1.559-410.054) (Table 1). Younger age 

(OR 0.932, 95% CI 0.910-0.955) and the coexistence of multiple 
microcalcifications (OR 2.976, 95% CI 1.118-7.924) were inde-
pendently associated with an increased risk for malignant nodules. 
The other parameters related to malignancy are shown in Table S5.

4.3. Diagnostic Performance of the Random Forest Model

A total of 53 US features and clinical features were used to build 
the models. The random forest model was trained on the train-
ing dataset with 1218 lesions and validated on an independent test 
dataset of 601 lesions. The top five weighted features, including 
the A/T ratio, margin, age, morphology, and multiple microcalcifi-
cations, were obtained from feature selection (Figure 1).

After 5-fold cross-validation in the training dataset, the AUC in-
cluding the A/T ratio was 0.897, which was significantly higher 
than that without the A/T ratio (AUC: 0.862) (P<0.05). The AUC 
including the A/T ratio in the validation dataset was 0.769, which 
was also significantly higher than that without the A/T ratio (AUC: 
0.716) (P<0.05) (Table 2) (Figure 1). The calibration curve demon-
strated good agreement between the predictions and diagnoses of 
malignancy in the training dataset. The Hosmer-Lemeshow test re-
sult showed no departure from a perfect fit. The decision curves in 
the validation dataset showed that if the threshold probability was 
between 0.3 and 1.0 or more than 0.06, it was beneficial to use the 
model to predict malignancy (Table 2).

Figure 1: The predictive performance of the random forest model and US images of the thyroid. (a) The weighted features of the random forest model. 
(b) The AUC of the random forest model with and without the A/T ratio for predicting malignancy in the training dataset. (c) The AUC of the random 
forest model with and without the A/T ratio or predicting malignancy in the validation dataset. (d) A 52-year-old female with a 19.0×15.0 mm thyroid 
nodule with a regular shape, clear margin, and multiple calcifications that was pathologically diagnosed as a benign nodule. (e) A 35-year-old female 
with an 11.3×12.0 mm thyroid nodule with an irregular shape, unclear margin, A/T>1, and no calcification that was pathologically diagnosed as ma-
lignant.
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Table 2: The diagnostic performance of the random forest and nomogram models in the training and validation datasets

 Accuracy Sensitivity Specificity PPV NPV AUC [95% CI]

Random forest 
model

Training dataset 87.44% 95.59% 61.11% 88.81% 81.11% 0.897 (0.875-0.919)**
Training dataset without A/T 
ratio 80.38% 81.40% 77.08% 91.98% 56.20% 0.862 (0.845-0.884)**

Validation dataset 74.88% 80.00% 61.99% 84.11% 55.21% 0.769 (0.725-0.812)*
Validation dataset without 
A/T ratio 44.49% 28.84% 82.46% 80.52% 31.54% 0.716 (0.664-0.769)*

Nomogram 
model

Training dataset 70.61% 66.56% 83.68% 92.94% 43.66% 0.823 (0.795-0.850)**
Training dataset without A/T 
ratio 71.02% 73.87% 61.81% 86.20% 42.28% 0.728 (0.702-0.753**

Validation dataset 76.04% 76.74% 74.27% 88.24% 55.95% 0.818 (0.779-0.856)**
Validation dataset without 
A/T ratio 71.71% 96.75% 82.40% 72.77% 50.00% 0.732 (0.694-0.767)**

A/T cutoff 
point = 0.900 
(proposed)

Training dataset 42.20% 25.81% 95.14% 94.49% 28.42% 0.735 (0.703-0.767)

Validation dataset 78.37% 74.81% 85.29% 90.83% 63.50% 0.745 (0.702-0.787)

PPV: positive predictive value; NPV: negative predictive value; AUC: area under the curve; CI: confidence interval. **P< 0.0001; * P< 0.01.

4.4. Diagnostic Performance of the Nomogram Model

Multiple logistic regression analysis identified three factors, in-
cluding age, A/T ratio, and multiple microcalcifications that were 
significantly related to malignancy. Furthermore, those factors 
were also highly weighted in the random forest model in the train-
ing dataset. These features were applied to develop the nomogram 
in the training dataset, and the nomogram was tested in the valida-
tion dataset. The nomogram showed high discrimination between 
benign and malignant lesions with an AUC of 0.823 (95% CI: 
0.795-0.850) in the training dataset and an AUC of 0.818 (95% CI: 
0.779-0.856) in the validation dataset, which was also significant-
ly higher than that without the A/T ratio in the models (training 

dataset AUC: 0.728, validation dataset AUC: 0.732, all P<0.05) 
(Figure 2).

4.5. The Diagnostic Performance of the A/T Ratio

Since the A/T ratio played the most important role in our study, we 
plotted the ROC curves of the A/T ratio alone to assess diagnostic 
performance. The AUC of the A/T ratio in the training dataset was 
0.735 (95% CI: 0.703-0.767). With a specificity of nearly 95% for 
diagnosing malignancy, the cutoff value in the training dataset was 
0.900 (Table 1) (Figure 3). When using the A/T ratio of 0.900 as 
the cutoff value in the validation dataset, the AUC was 0.745 (95% 
CI: 0.702-0.787), with a sensitivity and specificity of 74.81% and 
85.29%, respectively (Table 2).

Figure 2: The nomogram and its diagnostic performance. (a) The nomogram was developed in the training dataset. It included three factors (A/T ratio, 
age, and calcifications). The nomogram plot provides a visual way to predict the risk of malignancy. Calcification: 1: None of the calcifications; 2: a 
microcalcification; 3: multiple microcalcifications; 4: cluster of microcalcifications; 5: coarse calcifications. (b) The ROC curve of the nomogram with 
and without the A/T ratio for predicting malignancy in the training dataset. (c) The ROC curve of the nomogram with and without the A/T ratio for 
predicting malignancy in the validation dataset
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Figure 3: The ROC curves of the A/T ratio. (a) The ROC curves of the A/T ratio in the training dataset. (b) The ROC curves of the A/T ratio in the 
validation dataset. (c) Thyroid nodule with an A/T ratio = 1.077 that was diagnosed as malignant. (d) Thyroid nodule with an A/T ratio = 0.903 that 
was also diagnosed as malignant.

5. Discussion
In the present study, we developed and internally validated a clin-
ical model and a nomogram model based on US features to esti-
mate the risk of malignancy and thereby facilitate the management 
of patients with thyroid nodules. We found that the clinical model 
including A/T ratio had an AUC of 0.897 in the training dataset 
and an AUC of 0.769 in the validation dataset in random forest 
model, and had an AUC of 0.823 in the training dataset and an 
AUC of 0.818 in the validation dataset in nomogram models for 
diagnosing malignant nodules, which were significantly higher 
than those of without A/T ratio. Notably, we identified that the A/T 
ratio makes the largest contribution to the clinical and nomogram 
model, playing the most important role as an independent risk pre-
dictor. As a single predictive factor, A/T = 0.9 had a high specific-
ity of 95% in the diagnosis of malignancy in the training dataset, 
which yielded a high sensitivity of 74.81% and a high specificity 
of 85.29% when applied to the validation dataset. This strong asso-
ciation with malignancy exists irrespective of other characteristics 
and might reduce the misdiagnosis in ruling out benign nodules 
and, in particular, pinpointing nodules for which fine-needle biop-
sy can safely be performed.

Clinical models are important in creating lesion-tailored work-ups 
and optimizing the management of resources. Multiple studies 
have shown that the features in clinical models of thyroid nodules 
are closely related to benignity and malignancy and can provide 
solid evidence for diagnosis [30-32]. However, few have taken full 
advantage of assessing the likelihood of malignancy due to the 
heterogeneity and small number of patients. In our study, we in-
cluded 1218 lesions and convincingly found that multiple features, 

including the A/T ratio, calcifications, and age, were crucial for di-
agnosis. These results were also validated using 601 lesions from 
outside hospitals. The AUCs in the training and validation datasets 
were 0.897 and 0.769, respectively, which were higher than those 
previously reported [25, 33], further confirming the advantages 
and stability of this clinical model.

In our study, the clinical model showed that age, nodules with an 
A/T ratio larger than 0.9 and microcalcifications were the most 
important factors predicting malignancy in multivariate regression 
analysis. The A/T ratio had a much higher OR than age and micro-
calcifications for malignancy (41.833 vs. 0.961 vs. 4.618). Con-
sequently, when adding the A/T ratio to evaluate the diagnostic 
accuracy, the AUCs significantly increased in the random forest 
models and nomogram models, demonstrating the relatively good 
accuracy of an A/T ratio ≥ 0.9 alone in predicting malignancy. 
However, the results of multiple studies suggest that no individual 
US feature can accurately discriminate a malignant nodule, and 
US alone cannot be used for the decision of surgical intervention 
[10, 34, 35], and the coexistence of two or more highly suspicious 
US criteria greatly increases the potential risk for nodules being 
malignant [10, 36]. In our cases, the combination of age, microcal-
cifications and A/T ratio≥0.9 was an independent predictor of ma-
lignancy, and although the sensitivity was low, the specificity was 
95%. This means that younger patients with the coexistence of mi-
crocalcifications in A/T ratio≥0.9 nodules provide strong evidence 
of malignancy. This reduction in the A/T ratio from a threshold of 
1 to diagnose malignancy would increase the positive rate of risk 
stratification systems in ruling out benign nodules.

The mechanism by which malignant thyroid nodules with higher 
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A/T ratio grow across normal tissue planes has not been defined. 
However, a recent study speculated that an A/T ratio ≥1 in malig-
nant thyroid nodules and an A/T ratio <1 in benign nodules are 
related to probe compression of the thyroid nodule during US ex-
amination [14]. The majority of benign nodules are composed of 
cystic components, leading to softer elasticity and less infiltration 
into the surrounding tissue, while dense fibrosis is seen in 56%–
89% of papillary thyroid carcinomas [37-39], which may be the 
main cause of decreased compressibility Therefore, an A/T ratio 
≥1 appears to be shown during the US examination of malignant 
nodules. In our study, all the malignant nodules were papillary thy-
roid carcinomas, and majority of them with an A/T ratio≥0.9 on 
US image. It can be explained by the malignant nodules smaller 
than 3 cm were included, which might compose of less dense fi-
brosis since the shorter course of the nodules when compared with 
those larger than 3 cm. However, these tests have limited effec-
tiveness in large samples. Therefore, more data is needed to train 
the model.

This study had some limitations that should be noted. First, the 
evaluation of samples was retrospective, and only tumors measur-
ing less than 3 cm were included. There was inevitable selection 
bias and limited clinical applicability. Second, although this study 
had a relatively large patient population, further investigations 
with larger patient populations are necessary to validate the diag-
nostic capabilities of the findings. Finally, all the US features of 
thyroid nodules were determined by a radiologist instead of radio-
mic features extracted from images in this study. We will investi-
gate US radiomic analysis in future research.

6. Conclusion
In conclusion, this predictive model for malignancy based on a 
combination of clinical and sonographic features has good perfor-
mance for distinguishing between benign and malignant thyroid 
lesions. An A/T ratio ≥0.9 can reduce misdiagnosis and contribute 
more to the predictive performance. These findings could improve 
the management of thyroid nodules by supporting clinicians and 
reducing the number of invasive surgical procedures for patients 
with low-risk thyroid nodules as well as help in clinical decision 
making.
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