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1. Abstract
The role of multi-parametric Magnetic Resonance Imaging (mp-
MRI) is becoming increasingly important in the diagnosis of clin-
ical severity of Prostate Cancer (PCa). However, mp-MRI images 
usually contain several unaligned 3D sequences, such as DWI im-
age sequences and T2-weighted image sequences, and there are 
many images among the entirety of 3D sequence images that do 
not contain cancerous tissue, which affects the accuracy of large-
scale prostate cancer detection. Therefore, there is a great need for 
a method that uses computer-aided accurate detection of mp-MRI 
images and minimizes the influence of useless features. Our pro-
posed PCa detection method is divided into three stages: (i) mul-
timodal image alignment, (ii) automatic cropping of the sequence 
images to the entire prostate region, and finally (iii) combining 
multiple modal images of each patient into novel 3D sequences, 
and using 3D-CNN networks to learn the newly composed 3D se-
quences by different modal alignments. We arrange the different 
modal methods to make the model fully learn the cancerous tissue 
features, and then predict the clinical severity of PCa and generate 
a 3D cancer response map for the 3D sequence images from the 

last convolution layer of the network. The prediction results and 
3D response map helps to understand the features that the model 
focuses on during the process of 3D-CNN feature learning. We ap-
plied out method to Toho hospital prostate cancer patient data, the 
AUC (=0.85) results are significantly higher than other methods.

2. Introduction
Prostate cancer [1] is currently one of the deadliest cancers in men, 
with a very high incidence and death rate each year. According to 
the World Health Organization, in 2020, about 1.41 million peo-
ple will suffer from prostate cancer and 380,000 will die from it 
[2]. Early diagnosis and treatment of prostate cancer can be highly 
effective in preventing the development of cancerous tissue and 
metastasis to advanced prostate cancer, effectively improving the 
five-year survival rate of prostate cancer patients and reducing pa-
tients' suffering.

The diagnosis of PCa is currently made clinically by Prostate-Spe-
cific Antigen (PSA) [3] blood test and Digital Rectal Examination 
(DRE) [4], followed by Transrectal Ultrasound (TRUS) biopsy if 
the PSA test result is positive. However, due to the limited number 
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of biopsy samples and/or the low ultrasound resolution of TRUS 
[5], lesions may be missed or the Gleason Score (GS) determined 
from the biopsy sample may differ in repeat biopsies and some-
times from the score determined by radical prostatectomy. More-
over, prostate cancer is classified as clinically severe or clinically 
non-severe based on the GS, which is currently ≤ 7 for clinically 
non-severe prostate cancer and ≥ 8 for clinically severe prostate 
cancer. According to recent studies [3][4], the diagnosis of prostate 
cancer using PCa and biopsy has low sensitivity and specificity, 
which can lead to underdiagnoses and overtreatment, thus causing 
unnecessary suffering to patients.

Recent studies have demonstrated that multi-parametric Mag-
netic Resonance Imaging (mp-MRI) [6-8] can provide a simpler, 
non-invasive and more accurate method of detecting prostate can-
cer. Through combining MRI modality images, these previous 
studies showed that mp-MRI images have a higher detection rate 
and better sensitivity and specificity for prostate cancer; because 
of the non-invasive and highly detectable nature of MRI, more and 
more studies focus on the classification of prostate cancer clinical 
severity under multiple modalities [9]. However, it is very difficult 
to manually perform operations such as classification and judg-
ment of mp-MRI because there is a large number of images for 
each patient, which requires a lot of time and expertise of the ra-
diologist for judging and interpretation analysis; In addition, due 
to the subjectiveness of the radiologist, there will be low sensi-
tivity and specificity in analyzing and judging the images [10], 
especially in the articulation of different regions of the prostate. 
Therefore, there is a need for a computer-assisted prostate cancer 
classification method that can reduce the time required to classify 
prostate cancer and improve the specificity and sensitivity of pros-
tate cancer diagnosis.

In recent studies [11-17, 12, 18], methods were developed for 
automatic prostate cancer detection, diagnosis and classification. 
Currently, the prostate cancer diagnosis method consists of three 
main parts: first, data pre-processing, (cropping the overall prostate 
image to the prostate region or specific cancer site region); second, 
inputting the pre-processed image into a deep learning network for 
feature learning to obtain a feature map of the prostate; and finally, 
output the results of cancer grade according to the voxels in the 
learned feature map. The first computer-aided diagnosis system for 
prostate cancer, designed by Chen et al. [19], extracts pixel fea-
tures from T2 images by matrix and discrete cosine transform, and 
then uses SVM classifier to classify the peripheral regions of the 
prostate. In addition, Langer et al.[20] classified the PZ part of the 
prostate using DCE map, and Tiwari et al. [21] designed a classifi-
cation system using semi-supervised multi-modal data. However, 
these studies separated different regions of the prostate, resulting 
in cancer at the junction of different regions to be easily missed 
and global features of the prostate to be ignored. Many recent stud-

ies have focused on improving neural network models, but it is 
known that deep learning is still a near black box [22] system, and 
the intermediate learning process is difficult to understand. There-
fore, there is the field of explainable deep learning, including CAM 
(Class Activation Mapping) [23] technology, which uses feature 
visualization to explore the working mechanism of deep convolu-
tional neural networks and the basis of judgment. However, when 
implementing CAM, it is necessary to change the structure of the 
network itself; thus, Grad-cam has been investigated on the basis 
of CAM [24]. Grad-cam can be implemented without changing the

structure of the network itself, and can extract the heat map of 
features of any layer, and a recent study investigated Grad-cam++ 
[25] to optimize the results of Grad-cam and make the positioning 
more accurate.

In this paper, we design a novel method for prostate cancer classi-
fication based on fusing image features under multiple modalities 
to enable the classification of clinical severity of prostate cancer 
with a single input rather than using a costly multiple input method 
with complex training. Specifically, we align the T2 and DWI im-
ages of the same patient to align the prostate region in space, crop 
the whole MRI image to the prostate region, fuse the aligned imag-
es with the T2 and DWI images to form a new 3D image sequence, 
and then input the new 3D sequence into the 3D-CNN network for 
feature learning. Finally, we output the features for prostate cancer 
severity classification and visualize the learning interest points of 
the network using the improved 3D-Grad-cam.

In this study, there are three main contributions:

•	 We developed a novel 3D-CNN input method that main-
tains the advantage of low training cost for single input 
and the advantage of multi-modal feature fusion of pre-
vious multi-input models, such that the model can fully 
fuse multi-modal features and facilitate network predic-
tion with a single input.

•	 We improve the category activation map based on CAM 
by using the category activation map in a 3D image se-
quence to obtain a 3D-Grad-cam to facilitate our visual-
ization of the network learning process.

•	 We performed an extensive experimental evaluation and 
comparison and used different 3D-CNN models and dif-
ferent sampling methods for 3DCNN models, and the 
AUC, sensitivity and specificity of this method on a test 
dataset were 0.85, 0.88; and 0.88, respectively.

The rest of the paper is structured as follows. The following sec-
tion focuses on the proposed method and the dataset used for the 
experiments, the third section presents the experimental results 
and compares the baseline with the latest methods, the discussion 
is presented in the fourth section, and finally, the conclusions are 
presented.
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3. Method
We predominantly used DWI and T2 image sequences from mp-
MRI images in this study. Our main goal was to classify patients 
with prostate cancer as clinically severe and clinically less severe. 
Figure 1 illustrates the main framework of our proposed method, 
which has 3 main parts. First, we rigidly aligned [26, 27] the T2 
images with the DWI images in the planar spatial domain to cor-
rect the misalignment of the prostate region due to different modal 

image sequences and biases in the acquisition process, we then 
cropprd out each T2 image with the DWI image containing the 
entire prostate region using an automatic method used for pros-
tate region boundary detection, and then the cropped images were 
pixel normalized, Third, we used the aligned and cropped T2 and 
DWI images to create a new 3D image sequence of the prostate, 
and we fed the new 3D image sequence into the 3D-CNN network 
and obtained two outputs, The details of each step are presented in 
the following sections.

Figure 1: The framework of the proposed method consists of four key steps: (1) rigid multi- parameter (DWI, T2) image alignment, 
(2) prostate region cropping, and (3) building a new 3D image sequence for input into a 3D-CNN network.

3.1. Rigid Alignment of DWI and T2 Images

In previous studies [12,6,8], it has been demonstrated that in pros-
tate mp-MRI, different MRI sequences are deterministic for pros-
tate cancer detection and classification results, but the sensitivity 
of detection results under single modality images is limited, so 
there is a need to use multiple MRI sequences to make judgments 
and fully utilize the characteristics of cancerous tissues under dif-
ferent modalities. Among all mp-MRI sequences, T2 images are 
more favorable for prostate cancer detection and diagnosis based 
on previous studies, but the sensitivity of T2 images is low [4, 28]. 
DWI images show the extent of water diffusion in the prostate due 
to the tight accumulation of cancer cells, and any changes in the 
prostate cancer can be detected more easily in DWI images; thus, 
DWI is another recommended image use for diagnosis. However, 
DWI does not completely represent the prostate lesions [28, 29], so 
there are many studies combining DWI with T2 images to achieve 
better sensitivity and specificity [6,8]. In the present study, we use

DWI and T2 sequences in mp-MRI for prostate cancer classifica-
tion.

One of the keys to accurately combine the DWI and T2 image fea-
tures is to align the DWI and T2 sequences, which can effectively 
eliminate the small variations between different sequences caused 
by external factors during mp-MRI acquisition [11]. In this study, 
we use the rigid 2D medical image alignment algorithm based on 
mutual information to maximize the mutual information between 

the reference image and the target image without changing the 
shape information of the cancerous region, and we use DWI as the 
target image and T2 as the reference image. In this study, we use 
DWI as the target image and T2 as the reference image. We use 
the best available medical image alignment algorithms, ANTs SyN 
[30], to align the images. The image alignment strategy generally 
starts with an initial globally aligned linear transformation, and the 
linear changes available in ANTs are optimized for mean squared 
deviation, correlated similarity measures, each of which are opti-
mized for translation and rotation.

Figure 2: Examples of alignment of DWI and T2 images are shown 
(1) original T2 image,

(2) original DWI image, and (3) aligned T2 image after overlay 
with DWI.

3.2. Prostate Area Cropping

After alignment, we use a basic regression CNN network to crop 
each image into a square region containing the prostate region, 
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Figure 2 shows the architecture of our CNN model for automati-
cally cropping the prostate region. We take the original image for 
training, the bounding box of the prostate region is marked man-
ually, and the model outputs three parameters, the center coordi-
nates of the square region (x, y), and the length l. The activation 
functions of all layers are tanh functions, and the corresponding 
loss function of our model is:

	 (1)

o1, o2 are the x and y coordinates, respectively, and o3 is the length 
In the present study, there have been more complex target detec-
tion networks, such as R-CNN [31] or automatic segmentation 
networks [32], but in our experiments, a simple regression CNN 
network has been able to achieve the detection of prostate square 
area more accurately, and the surrounding tissues outside the pros-
tate square area did not have any effect on the detection of prostate 
cancer.

3.3. New Sequence-Based 3D-CNN Network

In the previous steps, we obtained the new aligned DWI and T2 
images. We arrange the aligned and cropped prostate T2, DWI 
images and overlay images in order to form a new 3D image se-
quence. In the next experiments, we resample the new 3D image 
sequence of each patient 6 times and input it into the 3D-CNN 
model to meet the training needs of the 3D-CNN model and obtain 
two outputs: (1) 3D class activation map, where the values of the 
pixels in the map represent the importance of the model to focus 
on this region; and (2) high-dimensional semantic feature vectors, 
through which the 3D image sequence is classified. We use this 
novel 3D-CNN input and training method has three advantages: 
feature fusion, reinforcement features, and influence weight. (1) 
Feature fusion: with the 3D convolution kernel process and opera-
tion of spatial convolution of the image sequence, the convolution 
kernel will convolve the single image adjacent to the z-axis in the 

sequence image, and the features of the single image adjacent to 
the z-axis will be calculated by the convolution kernel and extract-
ed as high-dimensional vectors. This operation is good for fus-
ing all the adjacent image features, and can replace the traditional 
method by a multiple input multi-modal image

method. We form the images of different modalities into a new 
3d image sequence, so that neighboring images of each image in 
the sequence are images of different modalities. This method is a 
very cost-effective way to fuse the image features of different mo-
dalities. (2): Reinforcement features: in building a new 3d image 
sequence, we build the images of different modalities in different 
order to create a new image sequence; thus, the adjacent image 
modalities are often different, and the cancerous tissue features 
will be different under images of different modalities. The opera-
tion of 3D convolution kernel will make the model remember the 
features of cancerous tissue under the images of different modal-
ities, which can enhance the learning of cancerous features. (3) 
Influence weight: in the learning of 3d convolution, the features of 
the image sequence are gradually high-dimensionalized, and the 
high-dimensional vector contains the features of cancerous tissue 
in the full The linkage layer is expanded and the proportion of 
high-dimensional vectors containing cancerous tissue features to 
the total vectors increases, which can increase the accuracy of the 
prediction output. In the following, we provide detailed informa-
tion of each step. In previous studies, the input to the 3D-CNN 
network was usually a sequence of images of a patient with a par-
ticular MRI modality, and we fused the images of different modal-
ities into one sequence into the network, The features of the image 
columns are extracted by 3D-CNN, and the features of the z-axis 
will be observable in the z-axis direction because each image of 
the new sequence has the most evident cancerous tissue. In sec-
tion3, we use the best available 3D-CNN models for comparison 
experiments.

Figure 3: The prostate region detection and cropping used in this paper, in the convolu- tional neural network based prostate region detection, each 
rectangular box in the figure represents a feature map vector and shows the dimensional information of the feature map, the lower left corner of each 
feature map shows the length and width of the feature map, and the top shows the number of channels of the feature map, after this network three output 
parameters can be obtained, the center coordinates (x,y) of the detected square region containing the prostate, and the length of the square region L.
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3.4. Implementations

All experiments in this study were conducted on a Windows com-
puter using Python 3.6, with an Nvidia TITAN RTX graphics card 
and 24GB of RAM, on an Intel(R) Core(TM) i7-9700K 3.60GHz 
CPU. Pytorch [33] was used as the model backend to build the 
network architecture in all experiments. We use cross-entropy [34] 
loss function as the loss function, train 2000 epochs with batch size 
2, and the model converges at 500 epochs. We use adam [35] as 
the model optimizer and set the learning rate to be automatically 
adjusted; the initial learning rate is 1e-5, the learning rate is mul-
tiplied by 0.1 every 50 epochs, and the input images are flipped at 
random level with a probability of 0.5 during training. The data are 
regularized using regularization, and all data are randomly divided 
into training validation and test sets with a ratio of 50:30:20, the 
network The ne tword model is set to the model that preserves the 
best results.

4. Experiments
4.1. Setup

We collected T2 and DWI images of the prostate, which were used 
to train the model and evaluate the performance of the model. The 
prostate MRI data used in this paper consisted of 129 samples 
from Toho University Medical Center, Japan (dataset A), and 121 
samples from the 2017 SPIE-AAPM-NCI PROSTATEx challenge 
dataset (dataset B), PROSTATEx Challenge [36] ("SPIE-AAPM-
NCI Prostate MR Classification Challenge") was held in conjunc-
tion with the 2017 SPIE Medical Imaging Symposium and focuses 
on quantitative image analysis methods for diagnostic

purposes and clinically meaningful prostate cancer classification. 
The two datasets used, with data from different sites, were collect-
ed using different devices. We performed regularization prepro-
cessing on these two datasets as in the previous step. The method 
proposed in this paper is mainly used to predict high and low risk 
of early prostate cancer (according to the Gleason score, a score 
greater than or equal to 8 is considered as greater than or equal to 
8 is considered as clinically severe and a score less than or equal 
to 7 is considered as clinically insignificant). We use three main 
evaluation criteria to assess the performance of the model: AUC 
(area under curve) value, sensitivity and specificity, with AUC 
being defined as the area under the ROC curve. Sensitivity (Se), 
called True-Positive Fraction (TPF; or True-Positive Rate (TPR)), 
is the probability that a diagnostic test is correctly diagnosed as 
positive in a case group. Specificity (Sp), called the True-Negative 
Rate (TNF; or True-Negative Rate (TNR)): is the probability that 
the diagnostic test is correctly diagnosed as negative in the con-
trol group, False-negative rate (False-Negative Fraction, FNF; or 
False-Negative Rate, FNR) is the probability that the diagnostic 
test is negative in the case group, which will lead to delayed dis-
ease and treatment. False-Positive Fraction (FPF; or False Positive 

Rate (FPR)) is the probability that a diagnostic test is incorrectly 
diagnosed as positive in the control group. A false positive will 
result in incorrect treatment and patients sometimes suffer from 
risky confirmatory tests.

                     				    (2)

 					     (3)

In the above equation, TP, TN, FP, and FN; represent true positive, 
true negative, false positive and false negative respectively.

In the following sections, experiments are conducted to evaluate 
the performance of the proposed method in this paper. Table 1 
shows the comparison experiments for different 3D-CNN mod-
els, Table 2 shows the comparison experiments for different newly 
order input sequences, and Table 3 shows the comparison experi-
ments for different modalities of the integral image sequence, and 
the comparison with the recent method is shown in Table 4.

Table 1: Comparison with 3D CNN methodology

Methods Sensitivity Specificity AUC CI 95% Paramters

C3D 0.83 0.79 0.81 0.80-0.83 78M

3DSqueezeNet 0.73 0.68 0.7 0.72-0.78 2.15M

3DMobileNet 0.74 0.67 0.69 0.73-0.75 8.22M

3DShuffleNet 0.74 0.65 0.68 0.74-0.76 6.64M

3DResnet50 0.88 0.88 0.85 0.85-0.87 44.24M

3DResnet101 0.88 0.84 0.83 0.84-0.87 83.29M

ResNext101 0.83 0.75 0.81 0.76-0.82 48.34

4.2. Comparison with the Classic 3D CNN Networks

In the first step of the experiment, we input the new 3D image 
sequences into different 3D-CNN models and uniformly use the 
pre-training weights of ucf-101[37]. Table 1 shows the results of 
all the 3D-CNN models when processing the new standard se-
quence images. All the models are from [38]. From the compari-
sons, we find that although the model parameters of ShuffNet are 
very limited, ResNet50 achieves the best AUC value in the test 
set. Sensitivity, specificity and AUC values reached 0.88, 0.88 and 
0.85, respectively.

4.3. Comparison of Different Input Order

In the second step of the experiment, we input the images obtained 
in the previous steps into the model in different orders. In the pre-
vious step of the experiment (section 3.2), the order of the single 
modal images in our new input image sequence is DWI, T2, and 
then overlap. In this section, we divide the order in the new image 
sequence into four different orders. Order one: DWI, T2, and then 
overlap as a set of resampling three times; order two: T2 resam-
pling three times, DWI resampling three times, and then overlap 
resampling three times; order three: DWI resampling three times, 
T2 resampling three times, and then overlap resampling three 
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times; and order four: overlap resampling three times, T2 resa-
mpling three times, and then DWI resampling three times. In the 
Experiment in section 3.2 3DResNet50 achieved the best perfor-
mance, we input different input sequences into the 3DResNet50 
network, and in table 2, we can see in the best results are produced 
by order 1.

Table 2: Comparison experiments with different sequence order

Methods Sensitivity Specificity AUC CI 95% Paramters

Order1 0.88 0.88 0.85 0.85-0.87 44.24M

Order2 0.84 0.84 0.82 0.86-0.88 –

Order3 0.84 0.84 0.81 0.82-0.84 –

Order4 0.88 0.84 0.84 0.79-0.84 –

Table 3: Comparison experiments of the integral 3D sequence.

Methods Sensitivity Specificity AUC CI 95% Parameters

T2(384) 0.68 0.63 0.68 0.66-0.688 44.24M

T2(128) 0.74 0.71 0.72 0.71-0.74 –

DWI(384) 0.72 0.71 0.71 0.69-0.72 –

DWI(128) 0.76 0.73 0.74 0.73-0.76 –

4.4. Comparison Experiments of the Integral 3D Sequence

In our paper, we propose a new 3D-CNN sequence. In the ex-
periment of this section, we compare this new sequence with the 
original integrity image sequence (Table 3). we selected the in-
tegrity unprocessed image sequence of each patient (T2 followed 
by DWI), and then cropped the original 512×512 image. The pro-
cessed images were fed into the 3DResnet50 CNN network, and 
the Table 3 shows that the input of the original complete image 
sequence is not as good as the results of our proposed method.

Table 4: Comparison with recent methodology.

Methods Sensitivity Specificity AUC CI 95% Paramters

Zhong et 
al.2018[18] 0.636 0.8 0.723 0.58-

0.88 –

Aldoj et 
al.2019[19] 0.74 0.7 0.78 – –

Chen et 
al.2017[17] 0.78 0.83 0.83 – –

Our method 0.88 0.88 0.85 0.85-
0.87 44.24M

4.5. Comparison with State-of-the-Art Methodology

We also compared our proposed method with state-of-the-art 
methods, including the one proposed by Aldoj et al. [39] in 2020 
for prostate cancer classification using multichannel convolutional 
neural networks on multimodal

MRI images. Their method method takes images of three modal-

ities, ADC, DWI and T2, as input, and inputs each modality to a 
different channel. There are 11 layers of 3D convolution with a 
convolution kernel of 333,

an ensemble step of 2 ✕ 2 ✕ 2, and two fully connected layers. Be-
cause the method chooses data of three modes in the experiment, 
we only choose the results of two modes from Aldoj et al. [39] as 
input in order to balance the comparison of experimental results. 
We can see that the sensitivity, specificity, and AUC values of our 
method are 0.14, 0.18, and 0.07 higher than the same 2-modality 
image inputs, respectively. A recent study by Zhong etal, [40] used 
deep migration learning for prostate cancer classification based on 
multimodal MRI images. It proposed to feed both T2 and ADC 
modality images into a deep migratory learning network for fea-
ture extraction and obtain prediction results after a fully connected 
layer. In the comparison experiments of Zhong et al. [40], they 
compared results using unimodal and bimodal image inputs. Here, 
for objectivity in the comparison experiments, we only selected 
the results of their comparison experiments with bimodal inputs, 
and find that the sensitivity, specificity, and AUC values of our 
model

improved by 0.144, 0.08, and 0.127, respectively. Chen et al. [41] 
proposed an approach to classify the clinical severity of prostate 
cancer using migration learning on the basis of multimodal MRI; 
the authors mainly used migration

learning and pre-trained weights obtained after training on Ima-
genet, and conducted experiments using InseptionV3. The sensi-
tivity, specificity and AUC values of our method were 0.1, 0.05 
and 0.002 higher than those of Chen et al. [41].

4.6. 3D-CNN Learning Process Visualization

There have been many previous studies [25][24] on deep learning 
model explanation and also on deep learning visualization, among 
which, the most well-known is CAM. CAM shows the basis of its 
decision in the form of a

heat map when a model is needed to explain the reason for its clas-
sification, as in informing where there are focal points in the map. 
For a deep convolutional neural network, after multiple convolu-
tion and pooling, the last convolutional layer contains the richest 
spatial and semantic information, and the next layers are the ful-
ly connected layer and softmax layer, which contain information 
that is difficult for humans to understand and display in a visual 
way. Therefore, in order to provide a reasonable explanation of the 
classification results of the convolutional neural network, it is nec-
essary to make full use of the last convolutional layer, and CAM 
draws on the idea of the well-known paper on Network in Net-
work [24], which uses GAP (Global Average Pooling) to replace 
the fully connected layer. The GAP can be considered as a special 
average pooling layer, except that its pool size is as large as the 
whole feature map, which is actually the average value of all pixels 
in each feature map. This greatly limits its use. If the model is al-
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ready online or the training cost is very high, it is almost impossi-
ble to retrain it. The basic idea of Grad-CAM is the same as that of 
CAM, which is to obtain the weights of each pair of feature maps 
and then find a weighted sum. CAM replaces the fully connected 
layers with GAP layers and retrains the weights, whereas Grad-
CAM takes a different approach and uses the global average of 
gradients to calculate the weights. Although Grad-CAM and other 
similar methods are effective, they have limitations, such as the 
localization of multiple similar targets at the same time, even for 
a single object, Grad-CAM cannot localize it completely. Based 
on Grad-CAM, [25] proposed Grad-CAM++, which improved the 
previous method, with the main contribution that ++ introduced a 

pixel-level weighting of the output gradient for a specific location. 
This method provides a measure of the importance of each pixel 
in the feature map and more importantly, they derive closed-form 
solutions while obtaining higher-order exact representations, in-
cluding softmax and exponential activation outputs. Our method 
requires one backpropagation, so the computational effort is con-
sistent with the previous gradient-based method, but the results 
are more effective. And it can be extended in the field of 3D deep 
learning visualization. In this paper, we use Grad-Cam++ in 3d 
image sequence, in the Figure 4, we can find the model accurate-
ly focus on the cancerous tissue by focus-map and heat-map, and 
learn the feature details of the cancerous tissue.

Figure 4: 3D-CNN model is visualized for learning, the figure shows 2 cases, the first column of each case is the original image, the second column is 
the focus map obtained by calculation, and the third column is the heat map obtained by 3D Grad-cam++ calculation

5. Discussion
There are few studies that use 3D-CNN networks to classify the 
clinical severity of the prostate. The main reason for that is that the 
cancerous tissue portion of the patient's whole prostate sequence 
often accounts for only a small part of the entire prostate image 
sequence. Due to the very small size of the cancerous tissue, al-
though 3D-CNN can learn the features of the sequence images 
better than 2D-CNN, it is also difficult to learn the features of the 
cancerous tissue adequately with very small targets, and it is easy 
for the large number of useless features in the prostate cancer im-
age sequence to affect the model learning results. So we propose 
the method in this paper, which solves this problem perfectly, but 
it is difficult to determine an optimal sequence length in construct-
ing a new image sequence, the original image sequence length is 
determined by the original sequence, but the newly constructed 
image sequence does not have a perfect graph column length. In 
this paper, we have explored different alignment methods in con-
structing the sequence as much as possible, and in future experi-
ments, the sequence length will be investigated in order to find an 
optimal sequence length.

6. Conclusion
In this paper, we propose a novel method for constructing 3D-CNN 

sequences and use the newly constructed 3D image sequences 
to input different 3D-CNN models for comparison experiments, 
compare the results after different

fine-tuning based on the basic constructed method, and finally 
compare the results of other 3D-CNN methods. The results con-
clude that our proposed method has the best AUC value of 0.85 
and using the improved 3d model visualization method shows the 
focus of model learning.
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