
clinandmedimages.com 1  

Journal of Clinical and 
Medical Images 

 
 

 

Traumatic Bleeding Detection Based on Fusion of 3D Shape and Local Texture Features 

Yang L1,2*, Nakaguchi T3, Jiang H2, Yang T1, Kimura H1, Arai K4, Nakada T4 and Xuan P5 

1Graduate School of Science and Technology, Chiba University, 263 8522, NishiChiba, Japan 

2School of Information Engineering and Research Center of Digital Medical Image Technique, Zhengzhou University, 450001, 

Zhengzhou, Henan, China 

3Center for Frontier Medical Engineering, Chiba University, 263 8522, NishiChiba, Japan 

4Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1 Chome81 Inohana, Chuo 

Ward, Chiba, 2608677 Japan 

5School of Computer Science and Technology, Heilongjiang University, 150080, Harbin, Heilongjiang, China 
 

 
 

Keywords: 

CT Images; 3D Convolutional Networks; Feature 

Fusion; 3D point cloud; Computer aided diagnosis 

Received: 10 Aug 2021 

Accepted: 28 Aug 2021 

Published: 02 Sep 2021 

 

Copyright: 

©2021 Yang L et al., This is an open access article distrib- 

uted under the terms of the Creative Commons 

Attribution License, which permits unrestricted use, 

distribution, and build upon your work non-commercially. 

 

Citation: 

Yang L et.al. Traumatic Bleeding Detection Based on Fu- 

sion of 3D Shape and Local Texture Features. J Clin Med 

Img. 2021; V5(15): 1-12 

 
 

 

1. Abstract 

Early detection of traumatic bleedings is very important for sub- 

sequent diagnosis and improving the survival rate of patients. In 

this study, an automatic detection approach for traumatic bleeding 

from contrast enhanced Computer Tomography (CT) images of 

whole body is proposed by combining the traditional image pro- 

cessing and deep learning method. Firstly, aiming at the problem 

of small target bleeding detection, a 3D reconstruction pre-pro- 

cessing method is designed to convert CT slice images into 3D 

volume data with smaller resolution. Secondly, a bleeding region 

segmentation model is constructed based on the 3D U-Net frame- 

work to obtain three-dimensional candidate features. The pro- 

posed model uses the spatial pyramid to extract multi-scale fea- 

tures, introduces two attention modules to enhance the difference 

between bleeding area and other tissues both in position and chan- 

nel level, and adds a 3D discriminator to correctly distinguish the 

target from the background, helping to maximize the extraction of 

relevant 3D candidate bleeding regions from CT images. Thirdly, 

the extracted 3D bleeding regions are fused with two-dimensional 

candidate bleeding features extracted by a multi-threshold method 

to reduce false positive prediction. Finally, the fused candidate fea- 

tures are formed into a 3D point cloud, which represents the shape 

information of the bleeding region. At the same time, the texture 

features are calculated from the Gray Level Co-occurrence Matrix 

(GLCM) that describes the statistical characteristics of normalized 

CT values. Then a PointNet based double encoder classification 

network is established to further decrease false positive predic- 

tions by performing a binary classification based on the 3D point 

cloud and the texture features. We evaluated the final results ac- 

cording to the standard of emergency medical experts. The results 

show that the total sensitivity is 89.19% with the small data set 

and relatively simple network structure, and there are 0.9367 false 

positive predictions per image on average. 

2. Introduction 

Worldwide, there are many challenges in human health and emer- 

gency medicine in regard to traumatic hemorrhage [1]. Traumatic 

bleeding is usually caused by a serious impact such as a car acci- 

dent or falling objects hitting the human body. Traumatic bleeding 

may occur in any part of the human body, and the amount of bleed- 

ing may be small in the early stage, but increases rapidly in a short 

period of time, seriously endangering human life. Uncontrolled 

bleeding greatly increases the risk of death [2]. Therefore, early 

detection and control of traumatic bleedings are very important for 

subsequent diagnosis and improving the survival rate of patients. 

It is a common method to detect internal bleeding in early stage of 

the whole body by enhanced Computer Tomography (CT) imaging 
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in patients with trauma [3]. According to the whole-body enhanced 

CT image, the doctor can identify the bleeding location, diagnose 

the severity, and subsequently make the treatment plan. 

The whole-body CT examination of each case can obtain three-di- 

mensional volume data composed of hundreds or even thousands 

of two-dimensional CT slice images, which can provide three-di- 

mensional shape and local texture information of different parts, 

and support doctors to make an accurate diagnosis from multiple 

angles and dimensions. 

Although enhanced CT images are of great value for early detec- 

tion and accurate diagnosis of internal bleeding, it is very difficult 

to make correct diagnoses by relying on the doctor’s eye to ob- 

serve these two-dimensional CT slices. Even a trained doctor can 

take a long time to locate all the bleeding areas by looking at the 

whole-body CT image. In the emergency state, due to fatigue and 

subjective factors, it is easy to miss the diagnosis of a small target 

bleeding point. Therefore, there is an urgent need to use Comput- 

er-Aided Diagnosis (CAD) and artificial intelligence technology 

to improve the diagnosis efficiency and level of doctors. In order 

to help emergency doctors rapidly identify the bleeding area in the 

whole body and carry out emergency rescue for patients, this study 

investigates the automatic detection method of traumatic bleeding 

from the enhanced CT images of the whole body. 

3. Related Work 

The CAD system can assist with disease diagnosis and reduce the 

time needed in the diagnosis process, so that emergency doctors 

have more time to treat and rescue patients. CAD systems can be 

divided into two types: Computer-Aided Detection (CADe) and 

Computer- Aided Diagnosis (CADx). The goal of CADe is to lo- 

cate the regions of interest in the image to find specific anomalies. 

The CADx system provides medical assistance for clinicians to 

distinguish the type, severity, stage, progression, and deteriora- 

tion of disease [4]. Numerous related studies and methods have 

been proposed and can be classified into three major categories: 

the traditional image processing methods for anomalies detection 

[5], deep learning-based approaches [6, 7], and related applica- 

tions [8]. 

The traditional image processing algorithms often used for anom- 

alies detection includes the threshold methods, segmentation, 

machine learning, and recognition algorithms. For example, Bha- 

dauria et al. proposed a method for detecting cerebral hemorrhage 

using the fuzzy C-means means and Level Set algorithm, and 

their proposed method had an average sensitivity of 99.58% [9]. 

Kumar et al. proposed an entropy-based automatic unsupervised 

approach for brain intracranial hemorrhage segmentation [10]. 

Kadam and Dhole applied GLCM (gray level co-occurrence ma- 

trix) and KSCM (Kernel Support Vector Machine) for brain tumor 

detection [11]. In these studies, bleeding detection based on specif- 

ic body regions has been achieved. However, the above tradition- 

al image processing algorithms all suffer from low reliability for 

three reasons: (1) the image intensity is distributed unevenly, (2) 

the shallow features are extracted with expert knowledge, and (3) 

lack of a unified detection framework. Different algorithms need 

to be designed to detect internal bleeding in different body parts. 

In addition, due to the diversity of bleeding areas in the images of 

whole-body CT scanning, the bleeding areas may have arbitrary 

size, direction, shape, and texture features, and it is very difficult 

to detect various bleeding areas in different body parts at the same 

time by using the traditional image processing algorithms. 

To address these challenges, deep learning-based methods are in- 

creasingly studied in recent years. They are able to extract features 

automatically and have been achieving good performance in im- 

age-related tasks [12–15]. 

The deep convolutional network-based method, which is now 

widely used in medical image processing [16], is also used for 

bleeding detection. The excellent feature learning ability of deep 

convolutional networks can obtain good accuracy and robustness 

from the high density information included in medical image data 

[17]. Arjun et al. applied a deep convolutional network for intra- 

cranial hemorrhage detection and obtained a sensitivity of 81% 

[18]. Candefjord et al. investigated the ability of broadband micro- 

wave technology in detecting subdural hematoma, they applied a 

human cranium phantom and numerical simulations of SDH and 

identified 100% and 82-96% sensitivity, respectively [19]. 

However, the deep learning method that can be applied to the de- 

tection of systemic hemorrhage has not been reported in the liter- 

ature. The problem to be solved in this study is how to obtain the 

most accurate and reliable bleeding area detection results based on 

whole-body enhanced CT images in light of the many challenges. 

(1) The first challenge is that the deep learning model is driven 

by big data. Large amounts of data are required for deep learning 

methods to avoid over fitting. We have not found the relevant pub- 

lic database because it is time-consuming and laborious to collect 

and annotate the data. (2) The second challenge is that the deep 

learning network does not perform well with highly unbalanced 

data. The deep learning model trained by unbalanced data will re- 

duce the detection sensitivity of the model. (3) The third challenge 

is that common deep learning models for target detection, such as 

Faster R-CNN [20] and YOLO Series [21–23], are not suitable for 

bleeding detection, because bleeding diagnosis needs to locate and 

measure the number of bleeding targets and the amount of bleed- 

ing. Moreover, in every case, the number of bleedings differ, and 

most of the bleeding areas are small, so it is more challenging to 

detect multiple small targets from large-scale images covering the 

whole body. (4) The fourth challenge is to improve the detection 

accuracy by solving the inadequacy of automatic feature extraction 

of the deep learning method: the convolutional neural network 

does not consider the relationship between different image blocks 

and has lost the overall boundary features of the detection target. 

In this study, whole-body CT enhanced scan data based on trau- 
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matic bleeding cases were collected, and all bleeding areas in each 

case were labeled by two emergency specialists. An automatic de- 

tection approach for traumatic bleeding from contrast enhanced 

CT images of whole body is proposed by combining the tradition- 

al image processing and deep learning method. CT values of all 

DICOM images are normalized to the range of 8-bit depth image 

by window processing. Processed images are cropped to a smaller 

resolution to help detect small targets and balance the ratio of seg- 

mentation target and background. Pre-processed images are sent 

to the adversarial segmentation network with attention modules 

and spatial pyramid modules, which fuse the features in differ- 

ent channels, positions and scales. The reconstructed segmenta- 

tion prediction is fused with results of multi CT value thresholds 

extraction by a logical and operator to obtain global features and 

decrease false positives. The post-processed result is sent to a clas- 

sifier, which combines the shape feature and texture feature by 

taking point cloud data converted by segmentation results and tex- 

ture features calculated from GLCM. The output of the classifier 

reduces the false positive prediction by controlling the probability 

score to obtain the final result. 

4. Materials and Methods 

The dataset is provided by the Affiliated Hospital of Chiba Uni- 

versity, including 33 contrast-enhanced CT cases with different 

amounts of traumatic bleedings. 

4.1. Dataset 

Main The detailed information of the dataset is shown in (Table 1). 

The dataset consists of 33 contrast-enhanced whole-body CT cas- 

es. Each case contains 665 to 2113 slices of DICOM images and 1 

to 60 spatial isolated traumatic bleedings. The original resolution 

of all DICOM images is 512×512 pixels and slice thickness 1.0 

mm; the pixel dimension ranges from 0.546×0.546 to 0.976×0.976 

mm. Bleeding labels are provided in the form of raw files. 

Figure 1 shows examples of bleeding in the head, abdomen, and 

thighs. As shown in Figure 1, the contrast agent can make the 

bleeding site have higher CT value in enhanced CT scan and make 

the CT value of the bleeding site become larger and brighter. How- 

ever, due to the uneven distribution of contrast agents in the hu- 

man body, it is difficult to obtain high detection sensitivity by only 

relying on the convolution layer of deep learning to extract the 

local features from the input images. Furthermore, there are many 

tissues in the human body, such as blood vessels and bones, whose 

CT values are similar to the bleeding areas, which can easily lead 

to detection of a large number of false positives. Especially, as 

shown in (Figure 1 (b)), when the bleeding area is very close to or 

directly adheres to the blood vessels, bones and other tissues, the 

existing methods often misjudge it as a whole bleeding area, thus 

affecting the detection accuracy. 

From the actual needs of emergency doctors, automatic detection 

of bleeding should first avoid missed diagnoses, otherwise it will 

endanger the lives of patients, and the number of false positive 

prediction should be as small as possible to save diagnosis time. 

Therefore, it is necessary to develop a high sensitivity and high 

specificity automatic bleeding detection method. 

4.2. Proposed Detection Method 

If the bleeding area is detected in the two-dimensional CT slice 

image, it is easy to cause false detection or missed detection be- 

cause the bleeding area, blood vessels, and bones all show imaging 

characteristics of white highlighted areas. Therefore, the accurate 

detection of bleeding areas is more suitable for direct three-dimen- 

sional space. 

 

Figure 1:  Example of bleedings in the dataset, red parts are bleeding labels. 

 

Table 1: Details of the dataset 
 

Element Value 

Number of cases 33 

Image size 512 ´ 512 pixel 

Pixel dimension 0.546 × 0.546 - 0.976 × 0.976 mm 

Slice thickness 1.0 mm 
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The overview of the entire process is shown in (Figure2), includ- 

ing segmentation and classification phases. Normalized images are 

processed to generate 3D volumes as the input of the generator, 

which is a 3D version of the U-shape network [24] with attention 

modules and spatial pyramid blocks. A 3D discriminator helps up- 

date parameters of the generator network and form an adversari- 

 

al training process. The features from the gray and texture levels 

from every spatial isolated region in the post-processed prediction 

is extracted, then converted to point cloud data. A double encod- 

er classifier uses point cloud data and texture features as input to 

perform binary classification. The final result takes the probability 

scores of true positive predictions as a threshold to prevent sensi- 

tivity from decreasing. 
 

 
Figure 2: Overview of proposed method, including 3D bleeding region segmentation by deep learning networks and the adaptive threshold method, and the 

classification approach using fusion features of boundary features from point cloud and texture features from GLCM calculation. 

4.2.1. 3D Reconstruction Pre-Processing 

In order to solve the problem of insufficient samples with small 

object detection, an operation of local 3D reconstruction pre-pro- 

cessing is applied to balance the ratio of target to the background. 

Firstly, CT images are normalized to grayscale images with 8-bit 

depth by window processing. The window is set to 300 window 

width and 200 window center, covering most CT value ranges of 

bleeding regions, as shown in the histogram of bleeding CT values 

(Figure 3). Since the slice thickness of all cases is 1.0 mm, a linear 

interpolation to axial images is applied so that the spatial resolu- 

tion of all CT cases is unified to 1.0 × 1.0 × 1.0 mm. 

The proportion of bleeding regions in the entire image is very 

small. The size of the axial CT image without uniform pixel di- 

mension is 512 × 512 pixels, while the volume of bleeding regions 

in our data set ranges from 31 to 63656 voxels. Axial CT images 

with voxel dimension unified are cropped into images with resolu- 

tion 96 × 96 pixels. Every 32 consecutive images are reconstructed 

to a 3D volume as the input of the segmentation network, and only 

volumes with bleeding are selected as training data, as shown in 

(Figure 4). The large number of whole-body CT images and small 

size of bleeding regions make the labeling of traumatic bleeding a 

difficult task, which also results in the small scale of the data set in 

this study. Therefore, a variety of data augmentation methods are 

used to increase the number of training samples and perform few- 

shot learning, including rotation, mirroring, Gaussian noise, and 

shifting of the dividing grids. 

 
Figure 3: Histogram of bleeding CT values, made according to bleeding labels of all 33 cases. The windowsetting in this study is made to cover the 

main range of bleeding regions, from CT value 50 to 350. 
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Figure 4: Generation of Segmentation network input volume. Blue arrows show the position of bleeding. 

4.2.2. 3D Bleeding Region Segmentation 

Compared with traditional detection approaches which generate 

bounding boxes as output, prediction results of the segmentation 

network are more conducive to describing multiple smaller tar- 

gets and being further processed. In this study, the segmentation 

process is designed as the first stage of the proposed detection 

method to obtain all bleeding candidate regions. The segmentation 

network is composed of a generator based on a 3D U-shaped net- 

work and a discriminator to form an adversarial network structure 

for adversarial training as baseline. The generator is divided into 

ment-wise multiply, and CT image and generator prediction ele- 

ment-wise multiplied with corresponding CT image are used as 

negative samples, as shown in (1) and (2): 
 

 

(1) 
 

 

(2) 

where I is the input volume of the generator, G is the correspond- 

ing ground truth, P is the prediction of the generator, 𝐿𝑜𝑠𝑠
𝐷𝐼𝐶𝐸 

is the 

two symmetrical parts of the up-sampling path and the down-sam- 

pling path. Each part is divided into 4 stages, composed of sever- 

al convolutional layers, and the corresponding up-sampling and 

down-sampling stages are connected. 

The network structure is selected as the generator to give pre- 

liminary segmentation predictions because it has been proven to 

achieve accurate results for small data sets. The shallow convolu- 

tional network depth can also prevent the feature map from being 

too small to lose information when processing small resolution 

images. The skip connection structure can combine the output of 

each convolutional down-sampling stage with the results of the 

up-sampling stage, so that the features extracted by different con- 

volutional layers can be combined, which is beneficial to improve 

the performance of the prediction. 

The discriminator part is composed of 6 convolutional layers. The 

network input is divided into two categories: (i) CT image and 

binarized bleeding ground truth used as positive samples after an 

element-wise multiply, and (ii) generator prediction element-wise 

multiplied with corresponding CT image used as negative samples. 

The loss function of the segmentation network is shown in (1) 

and (2). The generator loss consists of two parts, one is the DICE 

loss [25] obtained based on segmentation prediction and ground 

truth, and the other is the binary cross entropy loss obtained by 

element-wise multiplication of the segmentation prediction with 

the corresponding CT image as input. 

The discriminator loss is obtained by adding the positive score and 

negative score [26], obtained by the same sigmoid cross entropy 

loss function accepting different inputs: CT image and binarized 

bleeding ground truth are used as positive samples after an ele- 

DICE loss function and 𝐿𝑜𝑠𝑠
𝑆𝐶𝐸 

is the sigmoid cross-entropy loss 

with logits. 𝐿𝑜𝑠𝑠
𝐺 

is the loss of generator, 𝐿𝑜𝑠𝑠
𝐷
is the loss of dis- 

criminator. ⊗ is element-wise multiplication. λ is the combination 

weight of sigmoid cross-entropy loss summed with segmentation 

loss. In this study λ is set to 0.01, same with the weight set in [26]. 

The segmentation result based on the baseline network obtains 

a certain degree of sensitivity, but there are over-segmentations 

caused by the connection of tissues with similar CT values and 

lost bleedings due to too small size. Based on the baseline network 

structure, several custom improvements for this study are applied 

to improve the segmentation performance. The structure of the 

modified generator and discriminator is shown as (Figure 5a and 

Figure 5b), respectively. 

Position Attention Modules (PAM) [27] are added to the connec- 

tion of the up-sampling and down-sampling paths, and a Chan- 

nel Attention Module (CAM) [27] is added to the bottom of the 

down-sampling path, where the number of channels is largest. The 

detail of the two modules are shown in (Figure 6a and Figure 6b). 

The PAM module sends the input A into three convolutional layers 

respectively to obtain three feature maps. The feature map B is 

multiplied by the reshaped C after reshaping and transposing, and 

a soft-max operation is performed to obtain the position feature 

map S: 

(3) 

 

where 𝑠
𝑗𝑖 

is the influence of the feature of the 𝑖-th position on the 

𝑗-th position. If the two positions happen to belong to the same 

type of pixels, then 𝑠
𝑗𝑖 

will produce a large value, which will high- 

light the relation between similar features. Two PAM modules are 

located at the concatenation of the second and fourth stages, be- 
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cause in all our location experiments of PAM modules, this net- 

work structure has obtained the best accuracy. CAM is similar to 

the PAM module but focuses on the connection between different 

channels rather than between locations. 

The severity of bleeding caused by different degrees of trauma 

is also different, which causes the size of the bleeding regions to 

be vary. Therefore, Spatial Pyramid (SP) blocks [28] composed 

of several convolutional layers are placed in the part where each 

up-sampling path and down-sampling path are connected. There 

are a total of 4 SP modules in the segmentation network, and the 

positions are shown as SP1 to SP4 in (Figure 5). The detailed 

structure of these blocks is shown in (Figure 7). Convolutional 

kernels of different sizes allow them to extract features of different 

scales from feature maps of each down-sampling stage, then su- 

perimpose them and feed back to the corresponding up-sampling 

stage, so that the network is able to detect bleeding regions of dif- 

ferent sizes. 
 

 
Figure 5: Proposed segmentation network. (a) Structure of the generator part, including the basic 3D U-Netand additional attention modules and spatial 

pyramid blocks; (b) the discriminator consists of six convolutional layers. 

Figure 6: Attention modules. (a) The position module, A is input, B, C and D is outputs of convolutionallayers; (b) the channel attention module 
 

Figure 7: Spatial pyramid blocks, corresponding to four SP blocks in FIGURE 4. (a) SP1, (b) SP2, (c) SP3and (d) SP4. 
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4.3. Feature Fusion 

4.3.1. Global Feature Extraction 

The segmentation results had a large number of false positive pre- 

dictions when extracting as many areas as possible that could be 

bleeding regions. The reason is that there are a large number of 

tissues in the human body that are very similar in local features to 

bleeding areas. While cropping the image to a smaller size in order 

to detect small targets 

and balance the foreground and background ratios, global features 

of these tissues are lost, resulting in a large number of false posi- 

tives. At the same time, some tissues are cropped into several parts 

by dividing grids in pre-processing and sent to the segmentation 

network as different volumes, accompanied by the loss of global 

features. In reconstructed segmentation prediction, different parts 

of the same tissue may be judged as bleeding and non-bleeding re- 

spectively, resulting in the generation of irregular boundaries and 

incomplete shapes, which will distort the bleeding and non-bleed- 

ing shapes and have a negative effect on the subsequent classifica- 

tion tasks. One example is shown in (Figure 8). 

In response to the above two problems, a feature fusion based 

on CT thresholds extraction is applied to segmentation result as 

post-processing. The specific operation is to set thresholds of CT 

values and extract all regions above the thresholds from the entire 

DICOM cases, then perform the logical and fusion with the seg- 

mentation result and remove all the regions that do not overlap. 

According to the actual situation of existing bleeding regions in 

our data set and comments from medical experts, the volume of 

the bleeding area is usually between 30 and 75,000 voxels, so all 

regions whose volume is not within this range in the threshold ex- 

traction result will be removed. 

Considering that the bleeding of different parts will vary due to 

the difference of the contrast agent distribution, the dual threshold 

is adopted to cover as many bleeding regions as possible. In this 

study, based on experiments on existing data sets, the two thresh- 

olds were set to 101 and 155. These two values can acquire as 

many bleeding regions as possible while removing most false pos- 

itive predictions. The reduction in the number of false positive pre- 

dictions after post-processing is shown in (Figure 9). Through the 

fusion of segmentation results that are generated according to lo- 

cal features and the threshold extraction results that include global 

features, the number of false positive predictions can be largely 

reduced, and the remaining segmentation results obtain more com- 

plete boundary and shape information, as shown in (Figure 8c). 

 
Figure 8: Example of segmentation results affected by dividing grids. (a) The original CT image; red region in 

(b) is the segmentation result and yellow lines are dividing grids, the straight line boundary overlaps to the dividing grids in the segmentation result can 

be seen; (c) in the post-processed segmentation result, regions thatare connected to the prediction and have similar CT values are fused. 

 

Figure 9: Segmentation result. (a) Before post-processing and (b) after. The number of false positives largely decreases. Green regions are predictions, 

and the red part in the blue box is the bleeding label. There are fewerfalse positives in (b) than (a), and the true positive prediction in (b) overlaps with 

the ground truth more than (a). 

clinandmedimages.com 7 
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4.3.2. Point Cloud Generation 

After post-processing, the segmentation results need to be con- 

verted to extracted features for the classifier. The reason for us- 

ing point cloud data as input is that the boundary features can be 

clearly described by the combination of a certain number of points. 

Unlike other 3D convolutional networks in which the input size 

is limited by GPU memory, the point cloud data does not need to 

retain the original size after normalization, and the actual input of 

the network are coordinates of the point cloud, which saves more 

computing resources. In this study, every spatially independent 

volume in the segmentation result after threshing is re-sampled 

as a point cloud by linear interpolation, composed of 1024 points, 

and normalized to the range of (-1, 1). A rigid transformation is 

applied to augment the dataset by rotating point clouds by 45°, 

90°, 135°, 180°, 225°, 270° and 315°, respectively. The bleeding 

region before and after being converted to point cloud is shown as 

(Figure 10). 

 

 

Figure 10: Example of conversion of bleeding regions. (a) The bleeding prediction after 3D reconstruction; (b)the corresponding point cloud. It can be 

seen that the boundary and shape features are retained. 

4.3.3. Texture Features From GLCM 

Considering that although the point cloud data can reflect the 

shape features of the target in detail, other features such as voxel 

value, density and volume size are also lost due to the change of 

data type. Therefore, the second encoder takes the feature vector 

composed of feature values as input to make up for the missing 

features of the first encoder. The vector as the input of the sec- 

ond encoder contains 16 feature values, 4 of which are obtained 

from the gray level histogram: Average CT value, Max CT value, 

Min CT value and number of voxels. The remaining 12 features 

are calculated from GLCM [29]: Angular Second Moment, Con- 

trast, Correlation, Sum of Squares, Inverse Difference Moment, 

Sum Average, Sum Variance, Sum Entropy, Entropy, Difference 

Variance, Difference Entropy and Information Measures of Cor- 

relation. One example of 2D GLCM is shown in (Figure11). After 

expanding to the 3D level, each volume can generate GLCMs in 

26 directions. Assuming two directions that are 180° opposite are 

combined into one, the adjacent distance between voxels is 1, and 

there are 13 GLCMs corresponding to 13 sets of feature values. 

The final input of the network is the mean of these 13 sets. The 

range of CT values is very wide, but most of them are air or bones 

with higher density that are not related to bleeding detection. If 

the entire CT value range is normalized, the area not related to 

bleeding will account for the majority and the range of gray value 

after normalization will largely increase the number of rows and 

columns of GLCM, making the calculation more cumbersome. 

Therefore, this study selected the CT value range from -200 to 

1200 and quantified it to the range of 0 to 63 to construct a GLCM 

with 64 rows and columns. 

 

 

Figure 11: Example of 2D GLCM. Assuming that (a) is a normalized gray scale image, (b) shows the 4directions of each pixel in (a), and (c) is 

the sum of GLCMs calculated from (a) in the directions of (b). 
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4.4. Double Classification Network 

After post-processing, a certain amount of false positive predic- 

tions still exists in the segmentation result. In order to further de- 

crease false positives and reduce time as much as possible in an 

emergency diagnosis, a classification network is built to classify 

the segmentation result. All spatially independent 3D volumes in 

the reconstructed segmentation result are sent to the classifier as 

input and judged as bleeding or non-bleeding. By adjusting the 

threshold of probability scores, the classifier can reduce the num- 

ber of false detections while ensuring that the sensitivity does not 

decrease. 

Details of the classification network are shown in (Figure 12a). 

The network consists of two encoders and one decoder. Two en- 

coders receive processed segmentation results in different forms 

as input, extract features and fuse them to conduct the classifica- 

tion. The structure of the first encoder is based on PointNet [30]. 

The network is designed for point cloud data classification, seg- 

mentation and scene segmentation tasks. PointNet encoder takes 

a point cloud as input, and consists of convolutional layers, fully 

connected layers and two transform blocks, as shown in (Figure 

12). The purpose of the two blocks is to generate a rotation matrix 

that is supposed to transform the point cloud to produce a positive 

effect on the classification task. Detail of two transform blocks 

are shown in Figure 12(b) and Figure 12(c). After accepting the 

shape features provided by the point cloud data and texture fea- 

tures calculated from GLCMs, two encoders generate their own 

feature vectors from their respective inputs. The output of the two 

encoders is fused into one feature vector of length 16 after passing 

through several fully-connected layers, and concatenated into a 32 

length vector. After another fully-connected layer, the final output 

of the two possibility scores required for binary classification is 

generated. 

 

 

Figure 12: Proposed double encoder classifier. (b) and (c) are the input transform module and feature transformmodule in (a), respectively. nis the num- 

ber of input points. k is the number of classification categories. In this study, n=1024, k=2. 

5. Results and Discussion 

A series of experiments were conducted to evaluate the perfor- 

mance of the proposed detection scheme. This section presents the 

results of our experiments and some discussions. 

5.1. Experimental Setup 

The approach proposed in this study is implemented based on the 

Keras toolkit under the Windows10 operating system. An NVID- 

IA GeForce RTX 2080Ti GPU with 11GB memory is used as the 

hardware to train both the segmentation network and classification 

network. From the 33 CT cases containing traumatic bleedings 

provided by the Affiliated Hospital of Chiba University, 30 cas- 

es are selected as training data, containing 312 bleedings, and the 

remaining cases are selected as test data, containing 37 bleedings 

in total. 

5.2. Evaluation Metrics 

In order to evaluate the detection result of the proposed method, 

an evaluation method is proposed after consultation with medical 

doctors. The evaluation method extracts all spatially independent 

volumes from the reconstructed detection result and compares 

them with bleeding labels one by one to determine whether they 

are true positives or false positives. The method of comparison is 

to calculate the coordinates of the center of gravity of each bleed- 

ing region, and determine whether there is a prediction volume 

whose distance from its’ gravity center to the gravity center of the 

bleeding label is less than 7.5 mm in all predictions. For a bleeding 

region, if there is a prediction that meets the above requirements, 

it is determined that the bleeding is detected; if the prediction of 

the gravity center does not meet the requirements, it is determined 

that the bleeding is not detected. For a prediction volume, if there 

is a bleeding label with a distance from its’ gravity center to the 

gravity center of predictions less than 7.5 mm, then the prediction 

is judged as a true positive prediction; otherwise, it is judged as a 

false positive. 

 
(4) 

For the final result, the overall sensitivity, as shown in (4) and aver- 

age false positive predictions per case and per slice are counted for 

evaluation, where S is sensitivity, TP is the number of true positive 

predictions and FN is the number of false negative predictions. 
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5.3. Segmentation Results 

The segmentation results are shown in (Table 2), including the re- 

sult of the 3D U-Net and proposed segmentation network, as well 

as the post-processed result of the proposed segmentation network. 

The original 3D U-Net acquired a certain sensitivity at 83.78%, 

1.9542 average false positives per slice. Compared with the above 

result, the proposed segmentation network in this study acquired 

a higher sensitivity at 97.29%, but it produces 6.3277 average 

false positives per slice. We infer that this is attributed to the small 

features extracted by the small kernel convolutional layer in the 

spatial pyramid. Therefore, it is necessary to remove some false 

positives by post-processing before the classification phase. By 

fusing deep learning and CT value thresholding approaches, about 

78.53% of false positives in the segmentation results are removed. 

However, during post-processing, the sensitivity decreases from 

97.29% to 89.19%, and detection of three bleeding regions were 

lost. The additional false negative bleedings are shown in (Figure 

13); detection of two of them are lost because of connection with 

other tissues that have similar CT values, resulting in the shift of 

gravity center. Even when using higher CT values as thresholds, 

it is difficult to separate the bleeding regions from the connected 

tissues. The remaining bleeding region was not detected because 

the low CT values cannot be extracted by the current thresholds. 

However, using a low threshold to detect the above bleeding re- 

gion will cause a shift of gravity center of other bleeding regions; 

moreover, sensitivity is not improved and more false positives will 

be produced. 
 

 

Figure 13: Three additional false negatives after post-processing. Left side are CT images, right side show prediction (in green) and ground truth (in 

orange). (a) and (b) are caused by gravity centers shifting, and (c) is caused by low CT values of the bleeding region. 

Table 2: Segmentation results 
 

Approach Sensitivity Average FP per slice 

3D U-Net 83.78% 1.9542 

Proposed segmentation network 97.29% 6.3277 

Proposed segmentation network and post-processing 89.19% 1.3587 
 

5.4. Classification Results 

The classification result is shown in (Table 3), including the results 

of original PointNet and the proposed double encoder classifier. 

According to the results, the proposed method produces an aver- 

age of 0.9367 false positives per slice; about 31% of the false pos- 

itives in the segmentation result are removed. 

After using the average value, the proposed method removes from 

the original PointNet 0.2503 false positive per slice, thus proving 

that the additional gray level and texture features make up for the 

missing features in the point cloud data. The fusion of shape fea- 

tures and texture features help the classifier learn the input samples 

better and achieve a higher performance. 
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Table 3: Classification results 
 

Approach Sensitivity Average FP per slice 

PointNet 89.19% 1.1871 

Proposed classification network 89.19% 0.9367 
 

5.5. Ablation Study 

In order to verify the effectiveness of the modifications that we 

made, ablation experiments are performed, and results are shown 

in (Table 4). The baseline is the adversarial network based on 3D 

U-Net and discriminator. Compared with the result of 3D U-Net in 

Table 1, the adversarial network decreases the average false posi- 

tives from 1.9542 to 1.6447 per slice, but sensitivity also decreases 

to 81.08%. Attention modules increases the sensitivity, and one 

bleeding region attached to the rib that is lost in the 3D U-Net re- 

sult only is also detected, as shown in (Figure 14). The additional 

true positive shows that attention modules improve the ability to 

distinguish the bleeding from surrounding tissues. After applying 

spatial pyramid blocks, the sensitivity increases to 97.29% with 

an average of 6.3277 false positives per slice. The fusion of lo- 

cal features in different scales increases the sensitivity to almost 

100%, but the loss of global features causes a large number of 

false positives. The application of thresholds extraction provides 

global features and decreases 78.53% of false positives. By fusing 

the boundary features and texture features, the classifier further 

decreases the number of false positives. 

Table 4: Classification results 
 

Approach Sensitivity Average FP per slice 
Baseline 81.08% 1.6447 
Baseline + attention modules 83.78% 2.2349 
Baseline + attention modules + spatial pyramid blocks 97.29% 6.3277 
Baseline + attention modules + spatial pyramid blocks + thresholding 89.19% 1.3587 
Baseline + attention modules + spatial pyramid blocks + thresholding + classifier 89.19% 0.9367 

 

Figure 14: Bleeding detected after applying attention modules. (a) is CT image, (b) ground truth, (c, d) predictions before and after applying attention 

modules. (c) is evaluated as a false negative because of the gravity center deviation, whereas (d) is evaluated as true positive. 

6. Conclusion 

In this study, an approach for automatically detecting traumatic 

bleedings based on the 3D deep convolutional network and feature 

fusion is proposed to detect bleedings from contrast-enhanced CT 

images. 8-bit depth gray scale images converted by window pro- 

cessing are cropped and stitched into 96 × 96 × 32 pixel volumes 

as the input of the segmentation network to resolve the difficulty 

of detecting small targets. The proposed segmentation network ap- 

plies spatial pyramid modules to extract and fuse features in dif- 

ferent scales, and also applies 3D discriminator and two kinds of 

attention modules to improve the ability to distinguish bleeding 

from other body tissues. Through the combination of deep convo- 

lutional networks and CT value thresholding extraction, most false 

positives are removed under the premise of ensuring a certain level 

of sensitivity. Finally, a classifier that learns shape features, gray 

level and texture features through double encoders removes about 

31% of false positives from post-processed segmentation results. 

The final result obtains a sensitivity of 89.19%, with an average 

of 0.9367 false positives per slice. Medical doctors of the Affiliate 

Hospital of Chiba University give a positive evaluation of our re- 

sults and consider that the experimental results have certain refer- 

ence value in image-reading training and actual diagnosis. 

For future studies, we plan to gather more clinical data to further 

improve the performance of our deep convolutional networks. 

For the data processing, we plan to use different thresholds for 

different body areas to adapt to different bleeding regions, so as 

to prevent the sensitivity from decreasing in post-processing. We 

also plan to consult with doctors to improve the current evaluation 

methods, for example, adding general evaluation criteria such as 

IOU or DICE values with a certain weight to improve reliability. 
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