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1. Abstract 

Experiments on random-bred albino mice showed that application of β2ARs agonist (hexapre- 

naline sulfate, 1,5μg/kg, a single dose) and α7nAChRs agonist (GTS-21, 15 mg/kg, a single dose) 

cause a significant decrease in themortality of mice from experimental sepsis (i.p., E. coli O157:H7) 

when it is modeling 2 h after using these drugsdue toa decrease of the concentration of proinflam- 

matory cytokines TNF-α, IL-1β, and IL-6 (implementation of thecholinergicanti-inflammatory 

pathway). The combined use of β2ARs and α7nAChR agonists determines their additive effect. 

 
 

 

3. Introduction 

Mortality from sepsis, depending on various factors, ranges from 

12 to 60% of all deaths associated withdiseases and their com- 

plications [1], and there is an increase in the number of cases  

of sepsis and the mortality rate from it[2].Cholinergic stimula- 

tion significantly reduces the mortality of albino mice from sep- 

sis caused by intraperitoneal or intrapulmonary administration, 

respectively of E. coli and P. vulgaris [3-7].Thus, the cholinergic 

anti-inflammatory mechanism has been discovered in 1987 [3], 

named «cholinergic anti-inflammatory pathway» in 2000 [8] 

after the research its implementation at the organismal, cellular 

and subcellular levels [4,5,8,9]. It should be noted that in was 

proved the possibility of cholinomimetics for emergency activa- 

tion of antimicrobial resistance of the organism in sepsis [4,5]. In 

the future, the study of the cholinergic anti-inflammatory path- 

way caused by the action ofacetylcholine on α7n-acetylcholine 

receptors (α7nAChRs) cells of the monocyte-macrophage sys- 

tem (MMC), followedby inhibition of the production by the 

cells of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and 

reduced mortalityfrom sepsis were devoted hundreds of articles 

various authors [6-15]. Reduced production of TNF-α,IL-1β, 

IL-6 (anti-inflammatory effect occurrence) for cholinergic anti- 

inflammatory pathway is provided kinase JAK2,transcription 

factor STAT3, NF-κB transcription factor) [8,13-17]. 

When the cholinergic anti-inflammatory pathway is realized,  

in addition to the excitation of α7nAChRs[9,15,18,19], which 

cause the effects already mentioned, nAChRs activation of the 

brain substance of the adrenal glandsand sympathetic ganglia 

occurs, which leads to the production of epinephrine and nor- 

epinephrine (NE), which activationof macrophage-monocytic 

system cell (MMS) adrenergic receptors and reduce the pro- 

duction of pro-inflammatorycytokines [19]. At this n.vagus, 

releasing acetylcholine (ACh) in the celiac ganglion, causes 

excitation of the spleennerve, the action of NE through its ef- 

ferent fibers on T lymphocytes, the production of ACh by these 

lymphocytes,activation of ACh of α7nAChRs of MMS cells of the 

spleen [9,19]. Epinephrine and NE probably activating thead- 

renergic receptors of cells of the MMS (direct action) [19], β2- 

adrenergic receptors (β2ARs) of spleen T-lymphocytes(indirect 

effect) [10], cause the same effect as activation of α7nAChRs, 

leading to reduction in the synthesis ofpro-inflammatory cyto- 

kines by cells of the MMS [9,11,15]. 

4. Aim of the Study 

The aim of the study was to evaluate the combined action of β2- 

adrenergic and α7n-acetylcholinergic receptorsagonists in the 

implementation of the cholinergic anti-inflammatory pathway 

in sepsis in mice. 
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5. Materials and Methods 

Experiments were carried out on random-bred albino mice of 

both sexes weighing 18-22g. The control groupof mice (control 

group 1, n = 8) received i.p. 2.0 ml isotonic sodium chloride solu- 

tion (saline) at 2 h after subcutaneousinjection saline (0.5 ml).  

A second group of mice (control group 2, n = 55) were injected 

subcutaneously with 0.5 mlofsaline once. After 2 h after adminis- 

tration of saline mice received (i.p.) 2.5×109 CFUs diurnal culture 

of E. coliO157:H7 in 2.0 ml of saline (sepsis modeling) [3-5,20]. 

As used β2ARs selective agonist hexoprenaline sulfate(Nycomed) 

subcutaneously a single dose of 1.5 μg/kg in 0.5 ml of saline 

(group 3; n = 35). The fourth group of micewere injected an 

α7nAChRs agonist GTS-21 [3-(2,4-dimethoxybenzylidene)- 

anabaseinedihydrochloride] (Sigma-Aldrich) subcutaneously, 15 

mg/kg, a single dose [21]. The fifth group of mice received a com- 

bined effect of β2ARs selective agonist hexoprenaline sulfate (1.5 

μg/kg) and α7nAChRs agonist GTS-21 (subcutaneously, a single 

dose of 15mg/kg. Preparations (groups 3-5) were administered to 

mice 2 h before sepsis modeling.Mortality in mice from experi- 

mental peritonitis was evaluated 4 and 24 h after the administra- 

tion of 2.5×109CFUs diurnal culture of E. coli O157:H7 in 2.0 ml 

of saline (i.p.).The concentrations of TNF-α, IL-1β, and IL-6 were 

measured in mice blood of all groups (groups 1-5) using byELISA 

(MyBioSoure) according to manufacturer’s instructions (4 and 24 

h after the sepsis modeling). To determine theconcentration of 

proinflammatory cytokines used monoclonal antibodiesMyBio- 

Source (cat. N -MBS494184,MBS494492, MBS335516 for TNF-α, 

IL-1β, and IL-6, respectively). Blood for analysis was collected 

from theretro orbital sinus. The date processed statistically using 

Student’s t test. 

6. Results 

The use of β2ARs agonist hexoprenaline sulfate and α7nAChRs 

agonist (GTS-21), as well as their combination2 hours before the 

sepsis modeling, caused a decrease (p<0.05) mortality after 4 h 

compared with control group 2 (sepsis),respectively, in 2.13; 2.91 

and 4.61 times (p<0,05) (p<0,05), respectively (table 1) (by 19,3; 

23,9 и 28,5%), and after 24h – in 1.38; 1.59 и 3.15 times (by 25,2; 

33,8 and 62,0%) (p<0, 05), respectively (Table 1). 

A similar effect was caused by β2ARs agonist (hexoprenaline 

sulfate). There was no significant difference inmortality of mice 

between the parameters in these groups when using β2ARs and 

α7nAChRs agonists 4 and 24 h afterthe sepsis modeling (groups 3 

and 4). The combined action (group 5) of β2ARs and α7nAChRs 

agonists caused a greatereffect than the isolated effect of drugs. 

The concentrations of TNF-α, IL-1β and IL-6 cytokines signifi- 

cantly increased in the blood of mice 4 h after thesepsis mod- 

eling of (control group 2) compared to control group 1 (intact 

animals), respectively, in 17.8; 19.5 and 57.7times (p<0.05), after 

24 h, the concentrations of these pro-inflammatory cytokines 

significantly decreased, exceeding theparameters of group 1 in 

1.4 (p> 0.05), 4.5 and 8.2 times (p <0.05), respectively (Table. 2). 

Table 1: Effects of β2-adrenoreceptors agonist (hexoprenaline sulfate, 1,5μg/ 

kg), α7n-acetylcholine receptors agonist(GTS-21, 15 mg/kg) and their com- 

bined effect on mortality of mice from sepsis (i.p., E.coli O157:H7), % (М±m) 
 

 
Series of experiments 

Term study of mortality after the introduction of E. coli, h 

4 24 

Sepsis (control group 2, n = 55) 36,4±6,5 90,9±3,9 

β2ARs agonist hexaprenaline sulfate 

(group 3, n = 35) 
17,1±6,3* 65,7±8,0* 

α7nAChRs agonist (GTS-21) + sepsis 

(group 4; n = 40) 
12,5±5,1* 57,1±8,4* 

β2ARs agonist +α7nAChR agonist 

(GTS-21) + sepsis (group 5; n = 38) 
7,9±4,4* 28,9±7,6** 

* – p <0,05 as compared to control (group 2); ** – p<0,05 as compared to con- 

trol (group 2) and group 3 and 4. 

Table 2: Effects of β2-adrenoreceptors agonist (hexoprenaline sulfate, 1,5μg/ 

kg), α7n-acetylcholine receptors agonist(GTS-21, 15 mg/kg) and their com- 

bined effect on concentrations of pro-inflammatory cytokines in the blood of 

mice aftersepsis modeling (i.p., E. coli O157:H7), pm/ml % (М±m) 

 

Series of 

experiments 

ФНОα ИЛ1β ИЛ-6 

4 24 4 24 4 24 

Sepsis (control 

group 1) 
34±5 (8) 38±6 (9) 26±4 (8) 28±5 (8) 33±6 (8) 25±4 (8) 

Sepsis (control 

group 2) 
606±8a (8) 55±8с(5) 507±68a (8) 

125±21aс 

(5) 

1905±243a 

(7) 

205±34aс 

(5) 

β2ARs agonist - 

(hexaprenaline 

sulfate) + sepsis 

(group 3) 

 
160±28ab 

(7) 

 
43±8с (7) 

 
155±20ab 

(7) 

 
41±7abс (7) 

 
170±29ab 

(7) 

 
69±12abс 

(5) 

α7nAChR 

agonist (GTS- 

21) + sepsis 

(group 4) 

 
179±23ab 

(6) 

 
36±7bс (6) 

 
174±18ab 

(6) 

 
57±7abс (6)) 

 
205±25ab 

(6) 

 
59±8abс 

(6) 

β2ARs agonist 

+α7nAChRs 

agonist (GTS- 

21) + sepsis 

(group 5) 

 
93±10abd 

(7) 

 

40±6с (7) 

 

84±9abd (7) 

 

 
20±3abсd (7) 

 
87±9abd 

(7) 

 

32±4abсd 

(7) 

Note: 4 and 24 - time after sepsis modeling, h; in parentheses is the number of 

mice; a -p <0.05 compared with control (group 1); b-p <0.05 compared with 

the corresponding parameter in sepsis (control group 2); с -p <0.05 compared 

withparameter after 4 h; d - p <0.05 compared with parameters with isolated 

exposure to β2ARs and α7nAChRs agonists. 

The obtained experimental data indicate that β2ARs agonist re- 

duced the concentrations of TNF-α, IL-1β and IL-6 in blood 4 h 

after sepsis modeling (group 3) in comparison with the param- 

eters of control group 2 (sepsis withoutdrugs), respectively, 3,8; 

3.3 and 11.2 times (p <0.05). In this case, the concentration of 

pro-inflammatory cytokines in theblood significantly (p <0.05) 

exceeded the corresponding parameters of control group 1. The 

concentrations of TNF-α,IL-1β and IL-6 24 h after sepsis model- 

ing decreased compared to these parameters after 4 h, remaining 

below the valuesof group 2 in 1.3 (p> 0.05), 3.1 and 3.0 times (p 

<0.05), respectively. 

The concentrations of TNF-α, IL-1β and IL-6 in the blood of 

mice after application of the α7nAChR GTS-21agonist 4 hours 

 
 

Copyright ©2019 Zhao B et al This is an open access article distributed under the terms of the Creative Commons Attribution License, which 

permits unrestricted use, distribution, and build upon your work non-commercially. 2 



Volume 2 Issue 4 -2019 Case Report 

clinandmedimages.com 3 

 

 

 

after sepsis modeling (group 4) decreased compared to the pa- 

rameters of control group 2, respectively, in3.4; 2.9 and 9.3 times 

(p <0.05). There was a reduction of concentration of TNF-α, IL- 

1β and IL-6 cytokines 24 h aftersepsis modeling compared with 

the corresponding values after 4 h, remaining below the values 

of group 2, respectively,1.6; 2.2 and 3.5 times (p <0.05). 

There was no significant difference of concentrations of TNF-α, 

IL-1β and IL-6 in the blood of mice when usingβ2ARs and 

α7nAChRs agonists after modeling sepsis (groups 3 and 4). 

The concentrations of TNF-α, IL-1β, and IL-6 in the blood of 

mice 4 h after sepsis modeling (group 5)decreased compared to 

the values of control group 2 (sepsis) with the combined action 

of β2ARs and α7nAChRs agonists,respectively, in 6.5; 6.0 and 

21.9 times (p<0.05). The blood concentrations of these cytokines 

after 24 h significantly decreased compared to values after 4 h, 

and compared with the parameters of group 2 their concentra- 

tions werelower in 1.4 (p>0.05), 6.2 and 6.4 times, respectively 

(p<0.05). The contents of pro-inflammatory cytokines ingroups 

3, 4,and 5 was statistically significant (p<0.05) higher than the 

corresponding valuesof control group 1 after4 h aftersepsis mod- 

eling. 

The pro-inflammatory cytokines after the use of β2ARs and 

α7nAChRs agonists in sepsis (groups 3 and 4)decreased to a 

lesser extent (p <0.05) than with their combined effect (group 5). 

So, the combination of β2ARs and α7nAChRs agonists 4 h after 

the sepsis modeling reduced the concentrations of TNF-α, IL-1β 

and IL-6 in the blood ofmice compared to the isolated action of 

these preparations, respectively, in 1.8; 1.8; 2.0 times (p <0.05) 

comparedwithgroup 3 and 1.9; 2.1; 2.4 times (p <0.05) com- 

pared with group 4. This suggests that the additive effect of these 

drugs(β2ARs and α7nAChRs agonists) in the implementation of 

the cholinergic anti-inflammatory pathway is noted. 

7. Discussion 

The data obtained suggest that the α7nAChRs agonist (GTS-21) 

due to the implementation of the cholinergicanti-inflammatory 

pathway [6,22] leads to a decrease in mortality from sepsis [3,4,5] 

due to a decrease of MMS cellproduction of pro-inflammatory 

cytokines [23,24]. 

The literature data [6,10,25] suggest that the additive effect of 

β2ARs and α7nAChRs agonists (reduction inmortality from sep- 

sis) is associated with a decrease of the concentrations of pro- 

inflammatory cytokines in the bloodbyhexoprenaline sulfate and 

GTS-21 due to activation of the cholinergic anti-inflammatory 

pathway and adrenergicmechanisms. Excitation of nAChRs of 

the adrenal glands and sympathetic ganglia causes activation of 

 
 

MMS celladrenergic receptors by epinephrine and NE and sup- 

pression of the cytokines TNF-α, IL-1β and IL-6 [19,24,25]. The 

described effects are enhanced by a decrease in the synthesis of 

pro-inflammatory cytokines by the α7nAChRs agonist(GTS-21), 

acting directly on α7nAChRs of MMS cells [6,23,25,26]. 

It is known that monocytes and macrophages have βARs, and 

their activation usually leads to anti-inflammatoryeffect [19] 

due to inhibition of the nuclear transcription factor NF-κB[27]. 

Mechanisms of the reduction of synthesisofpro-inflammatory 

cytokines by the action of an agonist β2ARs (action on MMS 

cells) currently not wellunderstood, butresearch results are in- 

consistent [18,19]. 

8. Conclusions 

The application of β2ARs and α7nAChRs agonists (hexoprena- 

line sulfate and GTS-21) cause a significantdecreasein the mor- 

tality of mice from experimental sepsis (i.p., E. coli O157:H7) 

when it is modeling 2 h after usingthese drugs due to a decrease 

of the concentration of pro-inflammatory cytokines TNF-α, IL- 

1β, and IL-6 (implementationof the cholinergic anti-inflamma- 

tory pathway). The combined use of β2ARs and α7nAChRs ago- 

nists determines theiradditive effect. 
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