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1. Abstract
In this review, our understanding of covid-19 in people with liver 
disease is evolving. When making decisions related to covid-19 
infections or prevention, having up-to-date information is cri-
tical. This review discusses the hepatotropism of SARS-CoV-2, 
including the differential expression of viral receptors on liver 
cell types, Covid-19 liver injury and the possible mechanism of 
liver injury in Covid-19.  Lastly, we provide an overview of the 
pathogenesis and timeline of post-acute sequelae of SARS-CoV-
2(PASC) colloquially as Long Covid on gastrointestinal system. 
SARS-CoV-2 might infect the liver and is a key factor in liver 
dysfunction, however, the direct toxic attack of SARS-CoV-2 on 
the liver is still questionable and needs more evidences.

2. Mechanism Perspective
Our understanding of covid-19 in people with liver cirrhosis is 
evolving. When making decisions related to covid-19 infections 
or prevention, having up-to-date information is critical (AASLD) 
[1]. Since the early days of the SARS-CoV-2 pandemic, there have 
been concerns that patients with advanced liver disease might be at 
increased risk of morbidity and mortality following SARS-CoV-2 
infection. Prospective data from ongoing multicentre studies 
confirmed that patients with cirrhosis, particularly those who are 
decompensated, are at a higher risk of hospitalization, ventilation 
and death than those without chronic liver disease. Older age and 
cirrhosis severity as assessed by Chid-Push stage, are the most im-
portant predictors of mortality. Although most deaths in cirrhosis 
with severe COVID-19 are from respiratory failure, the pathophy-

siological mechanisms supporting this association remain unclear. 
One hypothesis is that prothrombotic alterations driven by CO-
VID-19 tilt the fragile haemostatic balance of hospitalized patients 
with decompensated cirrhosis towards hypercoagulability, there-
fore leading to pulmonary venous micro thrombosis, parenchymal 
extinction and respiratory failure [2].

3. Hepatotropism of SARS-CoV-19
The virus spike protein binds ACE2 to gain cell entry and trans-
membrane serine protease 2 (TMPRSS2) and paired basic amino 
acid cleaving enzyme (FURIN) are also important for infection; 
therefore, the expression of these receptors provided early clues 
for putative hepatic permissive cells [3].  Single-cell RNA se-
quencing analyses in healthy livers have shown gene expression 
levels for ACE2 to be highest in cholangiocytes (comparable to 
alveolar type 2 cells), followed in turn by sinusoidal endothelial 
cells and hepatocytes [4,5]. However, in a combined analysis of 
three single-cell RNA sequencing datasets from liver tissue from 
healthy individuals, very few hepatocytes co-expressed ACE2 and 
TMPRSS2 [6]. Experimental cellular and organoid models have 
therefore been important in trying to decipher the permissibility 
of liver cell types to SARS-CoV-2 infection. Hepatocellular car-
cinoma-derived cell lines Huh-7 and HepG2 are able to support 
the complete viral life cycle [7]. However, replication in primary 
hepatocytes has not yet been confirmed. This discrepancy between 
cellular models could be related to the presence of cancer-asso-
ciated mutations in hepatoma cell lines, such as the tumor suppres-
sor p53, which, under normal conditions, serves to downregulate 
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intracellular SARS-CoV-2 replication [8]. Zhao et al. generated 
ACE2-expressing and TMPRSS2-expressing human liver duc-
tal organoids that were able to recapitulate SARS-CoV-2 infec-
tion [9], suggesting that the bile duct epithelium could support 
pseudo particle entry. It is worth noting that the seemingly high 
SARS-CoV-2 entry receptor expression and viral permissibility 
of cholangiocytes is at odds with the non-cholestatic pattern of 
liver biochemistry typically found in COVID-19; the precise rea-
sons for this aspect are currently unknown. However, it is possible 
that SARS-CoV-2 can undergo low level replication in cholan-
giocytes in vivo without triggering cell death. This process would 
be consistent with other reservoirs of long-term viral replication, 
such as in the small intestine, which can help shape memory B 
cell responses to the virus over time [10]. Human pluripotent stem 
cell-derived liver organoids comprising mostly albumin-expres-
sing hepatocytes have also been shown to express ACE2 and per-
mitted SARS-CoV-2 pseudo particle entry [11].

4. Liver Injury in Covid-19 Patients
An increasing number of studies have reported liver damage in 
patients with COVID-19 and several have reported COVID-19 
patients to have an increased risk of liver dysfunction [12,13]. 
COVID-19 patients may incur different degrees of liver function 
damage with elevated aspartate amino transaminase (AST), glu-
tamate moderately amino transaminase (ALT), and total bilirubin 
(TBil) [14,15] The risk of liver damage in severe and critically ill 
patients was higher than in mild patients in most studies. However, 
there was a subtle difference in the prevalence of lung injury and 
COVID-19 disease severity across studies, and the exact extent of 
liver involvement in the COVID-19 disease course remains uncer-
tain [15,16]. In a meta-analysis of 12 studies comprised of 1267 
patients, the pooled prevalence of liver injury was 19%, the preva-
lence of ALT elevation was 18%, the prevalence of AST elevation 
was 21%, and the prevalence of total bilirubin elevation was 6% 
[17. Jin et al reported that the incidence rate of elevated AST was 
significantly higher in patients with GI symptoms than in those 
without.  Xu et al observed moderate micro vesicular steatosis and 
mild lobular and portal activity in the liver biopsy specimens of the 
patient with COVID-19, which provided evidence of liver injury 
[18]. It is worth noting that the elevated prothrombin time among 
COVID-19 patients with digestive symptoms is common, and se-
veral studies have reported thromboembolism as a presenting cli-
nical feature of COVID-19 [19]. Therefore, liver function and the 
level of liver enzymes should be monitored early in COVID-19 
patients with digestive symptoms.

COVID-19 may promote deterioration of liver function in patients 
who had been diagnosed with chronic liver disease previously 
and predict an increased risk for severe illness. Several studies 
have demonstrated that baseline liver disease severity is strongly 
associated with COVID-19-related morbidity and mortality; ad-
ditionally, decompensated cirrhosis, hepatocellular carcinoma, 

and alcohol-related liver disease are risk factors for adverse out-
comes from COVID-19 [20,21]. A multi-center study involving 
867 patients with chronic liver disease and COVID-19 reported 
that 14.0% of patients died, 60.4% were hospitalized, 23% were 
admitted to the ICU, and 7.7% developed hepatic decompensation 
[22]. Moon et al [23] found that 23.3% of patients with cirrhosis 
and COVID-19 were admitted to the ICU, 17.5% were treated with 
invasive ventilation, 18.6% were given non-invasive ventilatory 
support, 4.9% were given renal replacement therapy, and 39.8% 
died. Nowadays, accumulated data suggest that SARS-CoV-2 in-
fection in patients with cirrhosis appears to be a particularly lethal 
combination. Compared to the patients without baseline liver di-
sease, the patients with baseline liver disease are prone to unfa-
vorable prognoses. The mechanisms of liver injury in COVID-19 
patients are complex. The higher overall mortality among patients 
with CLD and COVID-19 may be due to cirrhosis-associated im-
mune dysfunction and metabolic syndrome, while it needs more 
research to confirm and explore [24,25].

5. Possible Mechanism of Liver Injury in Covid-19
There are a number of potential contributors to elevated liver en-
zyme levels in COVID-19. Liver biopsy results in patients with 
SARS-CoV-2 have been characterized by non-specific findings, 
including steatosis, mild lobular and/or portal inflammation, and 
vascular pathology [26,27,28]. In most cases, abnormal bioche-
mistries are likely multifactorial with potential contributions from 
immune-mediated inflammatory response, drug-induced liver in-
jury, hepatic congestion and extrahepatic release of transaminases 
[29] as well as possible direct infection of hepatocytes. Among 
hospitalized patients with COVID-19, elevations of serum AST 
levels positively correlate with levels of ALT but not with mar-
kers of muscle breakdown (such as creatinine kinase) or systemic 
inflammation (such as C-reactive protein (CRP) and ferritin) [30]. 
These findings imply that elevated liver enzymes in COVID-19 
result from direct hepatic injury, although COVID-19-associated 
rhabdomyolysis is rarely reported [31]. Lastly, AST is often found 
to exceed ALT during the course of COVID-19, which would be 
atypical for a classic hepatocellular pattern of liver injury outside 
of specific contexts such as alcohol-related liver disease, certain 
drug-induced liver injuries (for example, lamotrigine), ischemic 
hepatitis and cirrhosis [30]. The mechanisms responsible for an 
AST-predominant aminotransferase elevation remain incomple-
tely defined but could include COVID-19-related mitochondrial 
dysfunction30, SARS-CoV-2-induced hepatic steatosis26and 
altered hepatic perfusion secondary to micro thrombotic disease 
[26,32]. As with many other infections, SARS-CoV-2 is asso-
ciated with systemic inflammation that could contribute to ele-
vations in liver biochemistries via cytokine release [33]. Patients 
with substantial elevations in serum ALT levels often have high 
levels of CRP (which is synthesized by the liver), D-dimer, ferritin 
and IL-6 [34,35,36,37]. IL-6, which is produced by monocytes, 
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macrophages and T cells in response to activation of the innate and 
adaptive immune system, is the key driver of CRP production and 
high IL-6 levels are associated with liver injury in COVID-19 [34, 
36]. Notably, IL-6 increases during COVID-19 illness, declines as 
patients recover and correlates with severity of the disease course 
[38].

There are several other potential contributors to abnormal liver 
biochemistries in COVID-19, including ischemic hepatitis, he-
patic congestion related to cardiomyopathy, and transaminase re-
lease due to the breakdown of skeletal and cardiac muscle [39]. 
Venous and arterial thromboses are now a well-recognized feature 
of COVID-19 [40,41] including in the liver [26, 28], which could 
contribute to elevations in liver biochemistries. Lastly, drug-in-
duced liver injury is likely to contribute to elevated liver enzymes 
and might have been more common early in the pandemic due 

to the use of experimental therapies [42]. However, no study has 
yet comprehensively mapped the pattern of liver function tests 
found within studies over the course of the pandemic. Specific 
COVID-19 treatments implicated in cases of drug-induced liver 
injury include lopinavir–ritonavir [43,44] tocilizumab [45, 46] 
and remdesivir. The hepatotoxicity of remdesivir has been subject 
to debate. Although randomized trials in COVID-19 demonstrate 
equivalent liver enzyme elevations between treatment and control 
groups [46], screening of the WHO safety reports database still 
reveals a statistically significant odds ratio for liver injury with the 
use of remdesivir [47]. Fortunately, these considerations are likely 
to become less clinically relevant in light of the SOLIDARITY 
trial showing no benefit of remdesivir in hospitalized patients with 
COVID-19 [48] (Figure 1).

Figure 1: Mechanisms of COVID-19-associated liver injury: (1) drug-induced liver injury; (2) systemic inflammatory response (inflammatory cytokine 
storm); (3) hypoxic ischemia–reperfusion injury; (4) direct toxic effect of SARS-CoV-2 on the liver.

6. The Symptoms of Long Covid-19
Long COVID gastrointestinal symptoms include nausea, abdo-
minal pain, loss of appetite, heartburn and constipation [49] The 
gut microbiota composition is significantly altered in patients with 
COVID-19 [50], and gut microbiota dysbiosis is also a key com-
ponent of ME/CFS [51]. Higher levels of Ruminococcus gnavus 
and Bacteroides vulgatus and lower levels of Faecalibacterium 
prausnitzii have been found in people with long COVID compared 
with non-COVID-19 controls (from before the pandemic), with 
gut dysbiosis lasting at least 14 months; low levels of butyrate-pro-
ducing bacteria are strongly correlated with long COVID at 6 
months [52]. Persisting respiratory and neurological symptoms 
are each associated with specific gut pathogens [52]. Additional-
ly, SARS-CoV-2 RNA is present in stool samples of patients with 
COVID-19 [53]. With one study indicating persistence in the feces 
of 12.7% of participants 4 months after diagnosis of COVID-19 
and in 3.8% of participants at 7 months after diagnosis [54]. Most 

patients with long COVID symptoms and inflammatory bowel di-
sease 7 months after infection had antigen persistence in the gut 
mucosa [55]. Higher levels of fungal translocation, from the gut 
and/or lung epithelium, have been found in the plasma of patients 
with long COVID compared with those without long COVID or 
SARS-CoV-2-negative controls, possibly inducing cytokine pro-
duction [56]. Transferring gut bacteria from patients with long 
COVID to healthy mice resulted in lost cognitive functioning and 
impaired lung defenses in the mice, who were partially treated with 
the commensal probiotic bacterium Bifidobacterium longum [57].

7. Timeline
The onset and time course of symptoms differ across individuals 
and by symptom type. Neurological symptoms often have a de-
layed onset of weeks to months: among participants with cognitive 
symptoms, 43% reported a delayed onset of cognitive symptoms 
at least 1 month after COVID-19, with the delay associated with 
younger age [58]. Several neurocognitive symptoms worsen over 
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time and tend to persist longer, whereas gastrointestinal and respi-
ratory symptoms are more likely to resolve [59,60,61]. Additional-
ly, pain in joints, bones, ears, neck and back are more common at 1 
year than at 2 months, as is paresthesia, hair loss, blurry vision and 
swelling of the legs, hands and feet [62].

8. Limitation and Questions Need Answering in Fu-
ture Research
The tissue reservoirs for SARS-CoV-2 replication remain to be 
fully elucidated, partly due to difficulties in accessing biopsy 
samples from actively infected individuals and the requirement 
for high level laboratory containment facilities. Crucial questions 
remain open and need to be answered by future research: Which 
specific hepatic cells are infected by SARS‐CoV‐2? Which mole-
cular processes are dysregulated by the infection? What is the real 
contribution of direct cytopathic effects, cytokine storm, DILI or 
hypoxia in hepatic dysfunction? By which means could liver inju-
ry promote respiratory failure and predispose to a severe course of 
COVID‐19?

9. Conclusion
SARS-CoV-2 might infect the liver and is a key factor in liver dys-
function, however, the direct toxic attack of SARS-CoV-2 on the 
liver is still questionable and needs more evidences.
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